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Motivation: Ablation & Gas-Surface Interactions

Hypersonic flow, high gas temperature, and
elevated surface temperatures are critical to

Surface

Chemistry

Shock Layer

Boundary Layer

Shock Layer (Gas Chemistry)

= Species dependent thermodynamic nonequilibrium
— Vibrational temp # rotational temp (T, # Tg)

= Dissociation produces atomic N and O and formation of nitric oxide (NO)

Surface Chemistry

= N and O interact (adsorb) with
surface.

= Oxidation and nitridation
= (N, CO, CO, production.

Boundary Layer
= Diffusion of oxidization products
= Air chemistry

= Vibrationally excited species (N, , O,)

enacting the proper physical/chemical
mechanisms

How can we replicate
these physics in a ground
test facility?




Air-Carbon Ablation Model Considerations

Various literature models available T =1000 K [2000K [ 3000 K v
— Park, et al. (1976) :_
- MURI (2015) Ny 08
= ' | _ 0.24
Differences in model formulation : i : 2;32
— Number of reactions e L S 0.18
: : : : D16
— Active surface site treatment - MUR| - - 014
— Model formulation data L - . 0.12
0.1

. 008
Model Comparisons (US3D) ) 0 06
— Which is correct? \ 0.04
Prata— — 0.0

Need speciation data for validation Thanks to Erin Mussoni (SNL) for performing these simulations
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Established Methods for TPS Characterization

Solar Tower & Solar Furnace (SNL) |

www.optics.org

Summary

= Fach method produces
the realistic heating over
run times of several
minutes.

= These facilities cannot
reproduce flight velocity,
aerodynamic heating and
the correct air chemistry
concurrently.

We desire to conduct
experiments and observe

ablation products in a
coupled aero-thermal
environment




A Compliment to Traditional Material Characterization
Facilities: Sandia Hypersonic Shock Tunnel (HST)

Tunnel Specifications
= Nozzle Exit Dia. = 0.36m

= Test section diameter 0.5 m
Run times of 1-2 milliseconds

23850 3400
4060 9 6000 17

Target applications include high-

temperature surface chemistry and
hypersonic thermochemistry.

Conical Nozzle

| Test Section

—
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Survey of Upcoming Experiments in HST

= HST introduces flow complexities
— Stagnation region gases react
— Gas rapidly expanded through nozzle
— Result: thermal non-eq., N-O added

» Free-stream characterization necessary
— Temperature: CARS for heteronuclear molecules
— Velocity: NO LIF

= Examine boundary layer products
— Speciation/temperature of CO
e |[aser absorption
 CARS (Coherent Anti-Raman Stokes

Stagnation
Region

M, >> 1

|
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Free-Stream Characterization: Temperature

= Free-stream conditions 3500 = )
— Major source of uncertainty in shock tunnels | B + 8

)

0 . ~— 2400 E

— Temperature non-eq. in nozzle is expected g Weneed tomemsure | 15 2

E 1800, N5, Oz and NO temps. g

e 12005 02 4 £

= Simulation of nozzle temperatures " pE

— Significant T, differences between species 0; I
— N, has highest degree of non-eq " Specirum (eany from SPARC Rewults ;
S08fF Tyg=2350K ]
Z 6l Tror=260K ]
= Characterizing temperature non-eq. in HST goﬁzﬁ
— Use CARS to measure T, T, for N, Lo B AN
— Further improvement needed for T, Bt T meeen
— Next: O, CARS temp. measurements P — RS

2250 2280 2270 2280 2260 2300 2310 2320 2330

Raman Shift (am™")
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Free-Stream Characterization: Velocity

* NOis presentin shock tunnel flow (Xyo~4-5%) LIF beam tracks flow
 Tracer for flow visualization
« Nitric Oxide Tagging Velocimetry
« Long fluorescence lifetime, >100 ns
¢ Ux=3km/s=3 um/ns, At~100 ns = Ax~300 um
» Track NO fluorescence at high image magnification

Phantom 7510 w/IRO X, t, X, t
«— LIF beam
; 4000 . . 4000
3500 ¢ 1 3500+t
2" cyllnder 23000 - -4 3000 ' |__.+--=
S -
3
\ 2500 } { 2500} ]
jr. =3016.4 mis
—o—Run284|( | [|--=-- u
- - = Taraat ﬂu:12?.5 m's
Sy 200 ; EIIQ 00
Iayer | Time [ms] - Counts [-]




Impulse Facility Material Testing Considerations

= Generate free-stream conditionin HST = Resistively heat models
— Joule heating: T o I3,,51yRyas's

— Hot Wall Re-entry Testing in Hypersonic
Facilities, Zander et al. 2013 (others)

= Graphite Coupons
— Good surrogate for wall mat’l.
— Easily scalable

= How to achieve realistic T,,?

= |Impulse facilities | TR
— Short test time ek e ()

arbon Coupon et

— Unable to achieve realistic Tw MR
— Must preheat model M.




Tunnel Experiments: Mounting and Pyrometer

= Model Mounting Within HST

— High-temperature 3D printed plastic
e FElectrical isotion of electrodes

provide better viewing angle of model front
surface -

Pyrometer Camera
L) (Phantom Color V1212)

"HST Nozzle Exit f'

Mirror \
E;__

Heating process prior
 — to an experiment

= Pyrometer (Prior to Experiment)
Lower Temp ~800-1000 K, no filters

Higher temp w/filters: ~2550 C = 2825 K
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Extension to Larger Test Model Geometry

= QOriginal TPS Geometry Was Proof-of-Concept
— Subject to 3D flow effects
— Insufficient probe volume for diagnostics

= Modify TPS Geometry to Simulate 2D Flow
— Utilize same cylindrical cross-section
— Elongate span from 10 mm to 100 mm

Detector

= Measure boundary layer products (CO, etc)
— Laser absorption spectroscopy =
— CARS (for temperature, concentrations) <

5

oo

D)



Complimentary Measurements in UT ICP

= Collaboration with UT
— Used CARS to measure
* N, temperatures
* CO/N, mass ratios
— Utility
e High resolution
« Near-surface detection
— Challenges:
e High luminosity/temp

= Next: Measurements in SNL HST |
— Pulseburst CARS in TPS boundary layer |

Courtesy of

50-um x 3-mm CARS volume

= Compare HST/ICP CARS data w/models

0.03 L T T | L T — T 7 e ey
r —data T =2888.0909 K 1
[ = -theory _ ]
> CO/, = 0.27316
= 0021 —resi 2 m
3 0.02 [ residual o - 0336049 Ir j
O L 4
E 001 .
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5 O by,
:Mmﬁ-—m——-h— ) :
-0.01 T T e N S ]
2050 2100 2150 2200 2250 2300 2350
Raman Shift (cm™)
. [T .' """"""""""""""""""""""""""
x
= 4000 By
o 1 @® Move towards sample
3 : o
= - )
£ 3500 b ) e
g Coee
®
= 3000 NO.W.QM.
0 15 20 25 30 35 40 45 50
-g 0-6 ._ ------------- -O rrrrrr _.
& o4l ~ '
o O & :
S— r
Q :
O L L




Conclusions

= Ablation modeling
— Predictions vary between models

— Validation needed
— Sparse literature data

= Utilize HST in TPS characterization
— Replicate hypersonic flow
— Thermo-chemical
— Velocity

= Free-stream characterization needed
- N2 CARS: Trot, vib
— NO PLIF, U,

= |Impulse facility test times
— Model preheating required
— Use pyrometer to measure T,

= Stay Tuned: Boundary Layer Data
— Laser Absorption measurements (CO)

— CARS measurements of temp., relative
concentrations

— More UT Plasma torch measurements
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Questions?
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Surface Temperature Characterization: Pyrometry

= How to Measure T,,7: Thermal Radiation

— Some real surfaces (like graphite) are similar to a blackbody

. . . S
Ratio of signal from discrete wavelengths: ;‘—1 = f(Topject)
A2

« Unique to a particular BB temperature
« Also true if emitter is a gray body (constant emissivity)
Measuring 2 discrete wavelengths is challenging

Measure wavelength bands instead (more signal, better for
cameras)

Use color camera (Phantom V1212)
Increase temp. sensitivity with tri-color filter

%108
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Pyrometry Calibration

= (alibration Source:
— Use blackbody source for calibration _Jo E(ATon;) Trite Tienses Sy cam 44

ratte J-omE(A: Tobj)rfﬂt Tienses Szlg,(:-:1'.rni‘4-['?L
— Temperature range 1200 C - 2700 C
e Same as that of model T,

RiG Theory
R/E Theory | ]
¥ RGData

» Ratio Calibration:

¥ REData ]
— Data (*) of R/G and R/B ratios compare well to
theoretical values (line) for calibration range

. 1250 C - 2000 C shown at right | |

— Additional calibration data up to 2700 C recorded o o a0 a0

Temperature (K)

Color Ratio
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Benchtop Testing & Pyrometer Validation

: Testlng and Validation:

Benchtop heating using
Color Pyrometer:
q

tujvideo = "‘_U,E?Hr're?i!i‘

» Video: pyrometer cannot capture entire heat-up duration

FRun2é. Temp ()

— Not enough visible signal at lower temps and near-saturation at higher temps

— Pixels with intensity < 5% of saturation or >86% of saturation are removed from analysis
= Average 100 pixels at center of color pyrometer frame vs time

- T tempfromthe R/Gratio T, :temp from the R/Bratio
— 2D pyrometer compared to IR point pyrometer

Handheld pyrometerfocuses on a point
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Tunnel Experiments: High Speed Video & Schlieren

= High Speed Video (Run HST-277) = Schlieren (Run HST-272)

— Prior to backlighting, model is visible in

— Model has no preheating for better the frame due to high temperature
viewing of shock layer — Shock standoff ~2.8mm ( with / without

heating

Run27r2
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Free-Stream Characterization: N, CARS Temperature

Free-Stream Boundary Conditions : A Major Source of Uncertainty in Shock-Tunnel Measurements

CARS Intensity (a.u)

CARS Intensity
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Thermal Nonequilibrium

Spectrum (theory) from SPARC Results
P Tyg =2350K
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Next Steps

o |Improve sensitivity to T,

o Repeat N, measurements
o Measure O, temperatures
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Free-Stream Characterization: Velocity

» NO s presentin shock tunnel flow (Xyo~4-5%) At short for camera!  Pulse-burst Laser and HS Camera
» Tracer for flow visualization A= S ey
« Nitric Oxide Tagging Velocimetry ’_| r
» Long fluorescence lifetime, >100 ns J_L)_ _}

¢ Ux=3km/s =3 um/ns, At~100 ns = Ax~300 xm - } N

» Track NO fluorescence at high image magnification

><O' tO ><i/ ti
Phantom 7510 with IRO
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