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Outline

. The Context: Stochastic Inverse Problems (Permeability Fields)
. The Method: Data-consistent Inversion (DCI)

. The Challenge: Tackling Density Estimation in High-dimensions
. Some Reflections: Future Work and Analysis
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The Context

Stochastic Inversion with Permeability Fields
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In studies of hypersonic flight,
quantifying aleatoric uncertainties
in turbulent flows
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Solving stochastic inverse problems has many
important applications.

In additive manufacturing,
quantifying variability between
component parts due to manufacturing




Example Stochastic Inverse Problem:
Fluid Flow and Permeability Fields

Suppose we want to solve a Poisson equation in 2D using a mixed

method.
u=-KVp,
V-u=f

* |.e, aDarcy fluid flow problem through porous media with
permeability field K.

* The permeability is modeled as a random field...
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Example Stochastic Inverse Problem:
Fluid Flow and Permeability Fields

Karhunen-Loeve (KL) Expansion used to model the permeability field.
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Goal: Update parameters of KL expansion for better predictions.
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The Method

Using Data-consistent Inversion to Solve Stochastic Inverse Problems




Data-consistent Inversion: What is the method?

A measure-theoretic approach... gu)=1
N

Tops(Q(4))

Mypdate (A) = Tipnic (1)

npredict(Q ('1))

Assumption: Predictability assumption

« Given initial assumptions about A, model
Q(A) can predict the data

l[dea of Method: Update initial assumptions by

« Re-weighting initial with ratio of predicted
(push-forward) to observed density
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Data-consistent Inversion: A Consistent Solution

How does it work? :

+98 other KL terms

Observed Pressure Updated KL Parameter Sample
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Tupdate (A) IS @ consistent solution to the stochastic inverse problem!
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Information Gain at Sensors of Interest
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Data-consistent Inversion: Benefits and Drawbacks

Other benefits:

« Generally requires less model evaluations than hier. bayes

* Provides sanity check of predictability assumption (E(r) = 1)

« Density estimation in data space rather than parameter space

Some drawbacks:
« Density estimation in data space difficult when dim(D) is large
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The Approach

Utilizing Nonlinear Dimension Reduction (e.g., Manifold Learning)

To Enable Density Estimation for Data-consistent Inversion




Is the data high-dimensional?

The manifold hypothesis states that the dimension of “high-
dimensional” data is only superficially large...

« Data lie on a low dimensional manifold embedded in data space D

In many cases of interest, a reasonable assumption!

«  Multiple measurements made on physical systems likely to have
structured correlation determined by physics laws...
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Manifold Hypothesis: Consequences for DCI

Suppose there exists a manifold described by z € R™, m « dim(D) ,
Let f:Z - D with f(z) = q,
f(2) is injective (man. hyp.) =  mp(q) =mz(f~1(q)) - det|JT]|~1/2

5 (@A) ng(f1e Q@)

update () — pinit j
T (A) =" (1) - n_gred(f_l 5 Q(/'{))

n.init (ﬂ.) .

pred ( (}l))

Can we find a transformation of f~1:D - Z?
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Manifold Hypothesis: Observations about f~!

Goal: find a transformation f~%:D - Z... pupdate () = inic (). "2 " 2 QD)
* dimZ K dimD

» Density estimation in Z is easier...
« Leverage predicted samples to learn manifold (n obs. can be small!)
« Computation of determinant-Jacobian of f~1 is not necessary!

Lots of Options: (dimension reduction + density estimation)
» Linear PCA + KDE
* Isomap (nonlinear) + Normalizing Flows

November 5, 2022 ) | 15




Fluid Flow and Permeability Field Example

Use the observed pressure at all 20 sensors!

« KDEs perform poorly...
« 7 =0.000012

Tops(Q(4))

Tupdate (1) = Tinit(4) Q)
predic

E(r)=1
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General Idea with Linear PCA + KDE

1.

2
3
4
5

Sample initial KL parameters
Compute predicted sensor data
Perform Linear PCA on predicted data
Transform observed data to PC-space

Compute KDEs on both observed and
predicted PCA data

Apply DCI to obtain solution

November 5, 2022

n.update (1) — ninit ()l) .

9P (f~1oQ(A))

7P (f-10 Q1))

Full Disclosure:
r = 3.074

.




Information Gain at Sensors of Interest

Average Information Gain:
* (KL Divergence) = 0.369

«  >>first just two sensors (gain = 0.083)
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Problems: KDE in Linear PCA space

Data-consistent solution gives good information gain, but...

*  GKDE violates predictability assumption!
(though the assump. not violated by data)

ISSues:
* 1000 samples insufficient for GKDE with 5 principal components

» (Choosing a bandwidth challenging
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Isomap + Normalizing Flow

Isomap: nonlinear dimension reduction technique to find low-dim. embedding...

Choose 5 components: explains ~90% of var.

Normalizing Flow: neural network approach to density estimation

Full Disclosure:
Results: (KL Divergence) = 0.644 7 = 0.489
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Problems: Isomap + Normalizing Flows

Obtaining reliable density estimates using these ML techniques...
« Requires parameter tuning [

« Dependent on the network architecture
« Stochastic optimizers stuck in local minima
* ML techniques require large amounts of samples too

Side Note: PCA + Normalizing Flows
r =1.001

Takeaway:

 Intheory, any (dimension reduction + density estimation) can be used in conjunction with
data-consistent inversion to find a solution

« In practice, finding a £~ such that the density estimation problem is consistently
tractable is difficult

«  Especially, when number of samples is small!
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Some Reflections

Future Work and Analysis




Conclusions

1. Data-consistent Inversion can efficiently solve stochastic inverse
problems with high-dimensional data (dim(D) large)...
a) When there exists low-dimensional manifold...
b) When we can find a reasonable manifold (dimension reduction,)...
c) When we can approximate the density (density estimation) on the manifold...

2. Many new cutting-edge techniques for tackling b) and ¢), which
should we choose and when?

3. What is a sufficient sampling size to obtain reliable solutions?
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