

Sandia
National
Laboratories

MOFX-DB: An online database of computational adsorption data for nanoporous materials

N. Scott Bobbitt
Northwestern University
Sandia National Laboratories

Northwestern
University

AIChE Annual Meeting
Molecular and Data Science Modeling of Adsorption
Phoenix, AZ
November 16, 2022, 4:00pm

Convention Center N-131C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Acknowledgements

Randy Snurr
Northwestern

Dan Siderius
NIST

Ilja Siepmann
U Minnesota

Siderius, Daniel (Fed) <daniel.siderius@nist.gov>
to me ▾

Siderius/Bucior Video Conference
[View on Google Calendar](#)

When Fri Sep 7, 2018 9am – 10am (MDT)
Where TBD: Zoom or Google Hangout
Who Daniel Siderius*

Over 4 years in the making!

Zhao Li
Northwestern

Andrew Sun
U Minnesota

Ben Bucior
PhD Northwestern
Now at CSL Behring

Haoyuan Chen
U Texas-Rio
Grand Valley

Kaihang Shi
Northwestern

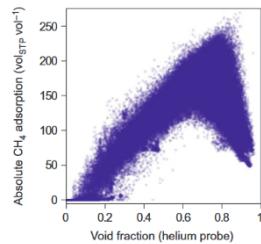
Nate Tracy-Amoroso
Northwestern
Now at Microsoft

Julia Merlin
Georgia Tech

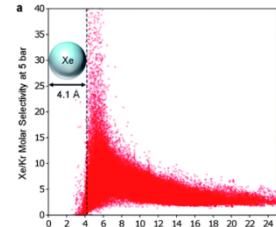
High-throughput modeling generates a lot of data...

Millions of data points about adsorption have been generated in Snurr group in the last decade.

Cost huge amount of computer time and human effort.

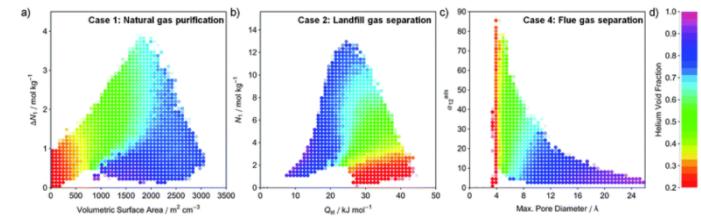

Methane storage

nature chemistry ARTICLES
PUBLISHED ONLINE: 6 NOVEMBER 2011 | DOI: 10.1038/NCHEM.1192

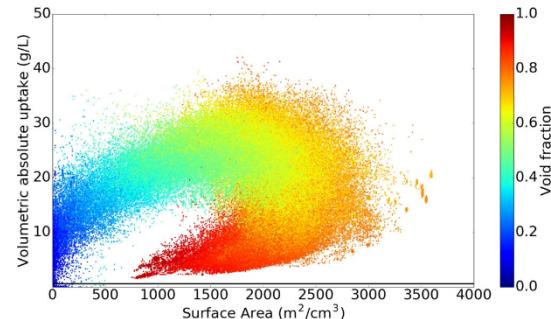

Large-scale screening of hypothetical metal-organic frameworks

Christopher E. Wilmer¹, Michael Leaf¹, Chang Yeon Lee², Omar K. Farha², Brad G. Hauser², Joseph T. Hupp² and Randall Q. Snurr^{1,*}

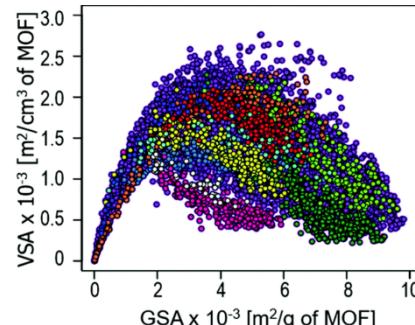
Wilmer et al, *Nature Chemistry*, 2012, **4**, 83-89



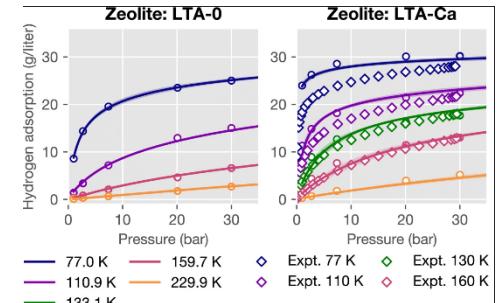
Xe/Kr separations


Sikora et al, *Chem. Sci.*, 2012, **3**, 2217-2223

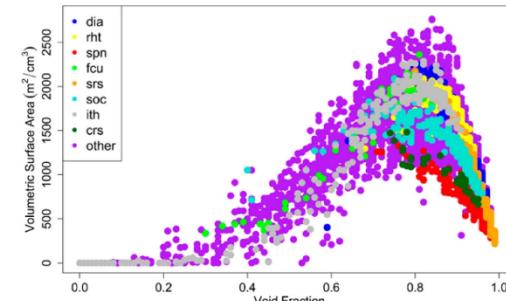
Carbon capture


Wilmer et al, *Energy Environ. Sci.*, 2012, **5**, 9849-9856

Hydrogen storage


Bobbitt et al, *J. Phys. Chem. C*, 2016, **120**, 27328-27341

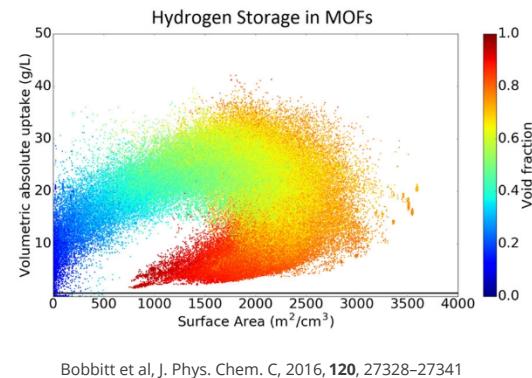
More hydrogen storage


Gómez-Gualdrón & Colón et al, *Energy Environ. Sci.*, 2016, **9**, 3279-3289

Hydrogen in zeolites

Sun et al, *Science Advances*, 2021, **7**, eabg3983

Methane storage, Xe/Kr separations


Colón & Gómez-Gualdrón, *Cryst. Growth Des.*, 2017, **17**, 5801-5810

But what now?

This data required a lot of effort to generate. Can we get more use out of it?

Example: Ben Bucior used data from J. Phys. Chem. Paper to train machine learning model for hydrogen storage.

Training Data

Bucior et al, Mol. Syst. Des. Eng., 2019, 4, 162

Data can still be used for machine learning or finding materials for specific applications.

Problem

Much of the data published in literature is either not available or not in a standardized form.

Might be published in Supporting Information or “available upon request”

Students graduate

Postdocs take other jobs

Professors retire

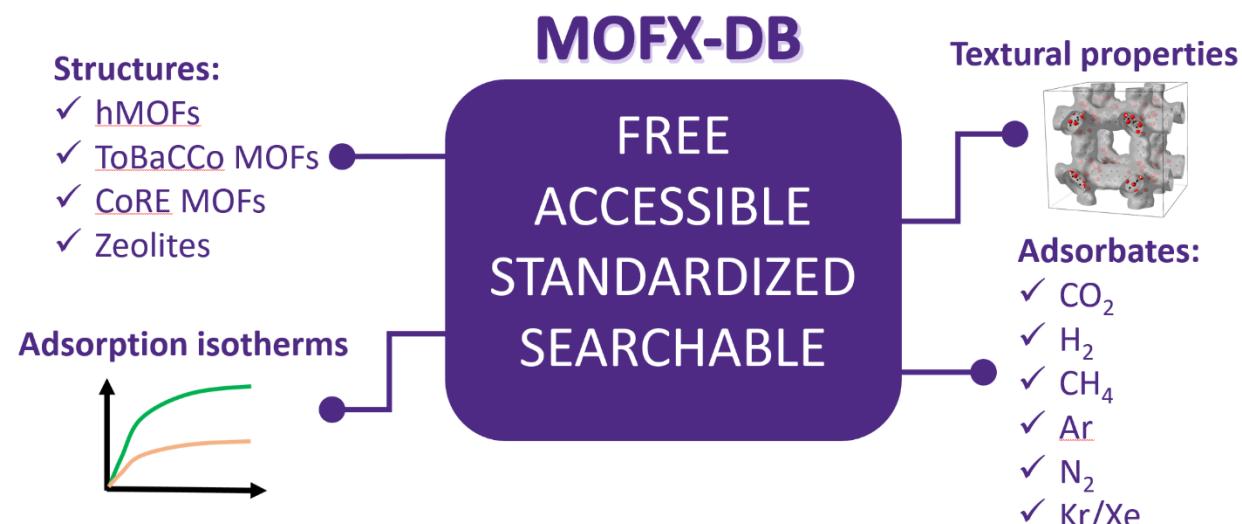
Institutional knowledge is lost over time.

One study¹ reached out to almost 1800 groups to ask for data and less than 7% actually sent it.

Probability of finding valid email address for corresponding author fell by 7% per year of article age.²

1. Gabelica, M.; Bojić, R.; Puljak, L., Many Researchers Were Not Compliant with Their Published Data Sharing Statement: Mixed-Methods Study. *Journal of Clinical Epidemiology* 2022.

2. Vines, The Availability of Research Data Declines Rapidly with Article Age. *Current Biology* 2014, 24, 94-97



FAIR guiding principles for scientific data management and stewardship published in 2016.

- 1. Findable:** data must be easy to find for humans and computers

- 2. Accessible:** data must be easy to access, free, and open

- 3. Interoperable:** data should be able to operate with common applications and tools for analysis

- 4. Reusable:** metadata and details should be well-described so data can be replicated and reused

Introducing MOFX-DB!

1. Online database of simulated adsorption data in 160,000 MOFs and 286 zeolites.
2. Over 3 million data points including H_2 , CH_4 , CO_2 , Xe , Kr , N_2 , and Ar
3. Some previously published and some new data
4. Contains all computational details and metadata (force field, GCMC parameters)
5. Textural properties for all structures
6. DOI link to original publications
7. Data stored in a JavaScript Object Notation (JSON) file that is fully compatible with NIST-ISODB database

User friendly GUI

Can search by textural properties like pore sizes and surface area

Need a MOF with

PLD between 4 – 10 Å

LCD > 20 Å

At least 2500 m²/g surface area

Use sliders to search and find downloadable list of structures.

Name

Void Fraction

 0.00 1.00
 Surface Area [m²/g]

 2500 10000
 Surface Area [m²/cm³]

 0 5000
 PLD [Å]

 4.00 9.90
 LCD [Å]

 20.30 100.00
 N2 CO₂
 Xe CH₄
 Kr H₂O
 H₂ Ar

Database
 CoREMOF 2019

DOI
 Any

Atoms in Framework:
 C Xe He N etc.

Name	Void Fraction	ASA [m ² /cm ³]	ASA [m ² /g]	PLD [Å]	LCD [Å]
BINSAU_clean	0.7874	1883.78	3994.65	9.52705	21.8801
CAVPUM_manual	0.8202	1942.56	4767.53	7.78019	20.4281
DITJIB_clean	0.8332	1774.76	3403.71	9.01147	20.3631
EDUVII_clean	0.8576	1870.75	4451.74	9.77849	20.322
FOPFAS_clean	0.7806	2159.7	3704.11	6.62083	20.9917
FORXIU_clean	0.8106	1947.73	3614.4	9.25578	23.8545
HABRAF_manual	0.8462	1867.98	4885.64	9.03515	24.3095
ic5005374_si_003	0.8216	1871.88	2997.65	8.12819	21.713
ICAQIO_clean	0.8268	1914.78	4745.53	7.95732	20.3911
ICAROV_clean	0.8236	1928.4	4743.67	7.92146	20.3334
IVEKEA_clean	0.8178	2033.02	3474.88	7.45433	22.6128
IYOWID_manual	0.822	1929.7	4763.89	7.7477	20.5167
IZEPAF_clean	0.7816	1958.05	3431.26	7.53546	24.1004
IZEPEJ_clean	0.7792	1808.89	3316.52	6.75259	23.8744
ja5b00365_si_002	0.826	2037.74	4502.96	7.63115	21.7763

Showing 1 to 15 of 35 entries
 Table only shows up to 100.

[Download 35 Results](#)

Large downloads make take a long time.
 To download an entire database go [here](#)

Click for more details

Filter results

Name	Void Fraction	ASA [m ² /cm ³]	ASA [m ² /g]	PLD [Å]	LCD [Å]
BINSAU_clean	0.7874	1883.78	3994.65	9.52705	21.8801
CAVPUM_manual	0.8202	1942.56	4767.53	7.78019	20.4281
DITJIB_clean	0.8332	1774.76	3403.71	9.01147	20.3631
EDUVII_clean	0.8576	1870.75	4451.74	9.77849	20.322
FOPFAS_clean	0.7806	2159.7	3704.11	6.62083	20.9917
FORXIU_clean	0.8106	1947.73	3614.4	9.25578	23.8545
HABRAF_manual	0.8462	1867.98	4885.64	9.03515	24.3095
ic5005374_si_003	0.8216	1871.88	2997.65	8.12819	21.713
ICAQIO_clean	0.8268	1914.78	4745.53	7.95732	20.3911
ICAROV_clean	0.8236	1928.4	4743.67	7.92146	20.3334
IVEKEA_clean	0.8178	2033.02	3474.88	7.45433	22.6128
IYOWID_manual	0.822	1929.7	4763.89	7.7477	20.5167
IZEPAF_clean	0.7816	1958.05	3431.26	7.53546	24.1004
IZEPEJ_clean	0.7792	1808.89	3316.52	6.75259	23.8744
ja5b00365_si_002	0.826	2037.74	4502.96	7.63115	21.7763

Showing 1 to 15 of 35 entries
Table only shows up to 100.

[Download 35 Results](#)

Large downloads make take a long time.
To download an entire database go [here](#)

MOFXDB API Databases

Loading units: Isotherm Default | Pressure Units: Isotherm Default

BINSAU_clean

MOFid: BINSAU_clean
MOFkey: BINSAU_clean
Database: CoREMOF 2019
Void Fraction: 0.7874
ASA [m²/g]: 3994.65
ASA [m²/cm³]: 1883.78
PLD [Å]: 9.52705
LCD [Å]: 21.8801
Atoms in MOF: 10688.0
Atomic Mass of Cif: 10688.0
Cif Volume [Å³]: 37635.1
Cif: [Download](#)

Isotherms (View JSON)

77K, digitized by Kaihang Shi, Zhao Li
Nitrogen

87K, digitized by Kaihang Shi, Zhao Li
Argon

Graphs showing Loading [cm³(STP)/g] vs Pressure [Pa] for Nitrogen at 77K and Argon at 87K.

Search by Adsorbate

Check boxes to search for data about particular adsorbates

Search for CO₂ data in MOFs/zeolites with PLD at least 5.0 Å and void fraction greater than 0.35

MOFXDB API Databases

Loading units Pressure Units
Isotherm Default Isotherm Default

Filter results

Name	Void Fraction	ASA [m ² /cm ³]	ASA [m ² /g]	PLD [Å]	LCD [Å]	Isotherms
hMOF-6	0.754903	2227.6	3174.5	9.75	10.75	CO ₂
hMOF-0	0.795539	2262.5	3676.3	10.75	11.75	CO ₂
hMOF-3	0.755062	2253.4	3211.3	9.25	10.75	CO ₂
hMOF-9	0.740707	2186.5	2935.5	9.75	10.75	CO ₂
hMOF-12	0.774685	2257.1	3503.8	9.75	11.25	CO ₂
hMOF-15	0.751822	2232.1	3247.5	10.25	10.75	CO ₂
hMOF-18	0.715809	2149.7	2660.0	9.25	10.25	CO ₂
hMOF-20	0.765508	2208.5	3043.9	9.25	10.75	CO ₂
hMOF-22	0.711722	2154.5	2578.2	9.25	10.25	CO ₂
hMOF-25	0.745595	2229.8	3073.3	9.25	10.25	CO ₂
hMOF-28	0.737951	2222.3	2749.9	8.25	9.75	CO ₂
hMOF-31	0.739774	2266.1	2611.6	9.25	10.25	CO ₂
hMOF-34	0.71995	2224.3	2389.8	8.75	10.25	CO ₂
hMOF-37	0.754234	2278.6	2831.9	8.75	9.75	CO ₂
hMOF-40	0.736703	2255.1	2422.8	8.25	9.25	CO ₂

Showing 1 to 15 of 100 entries

Previous 1 2 3 4 5 6 7 Next

Table only shows up to 100.

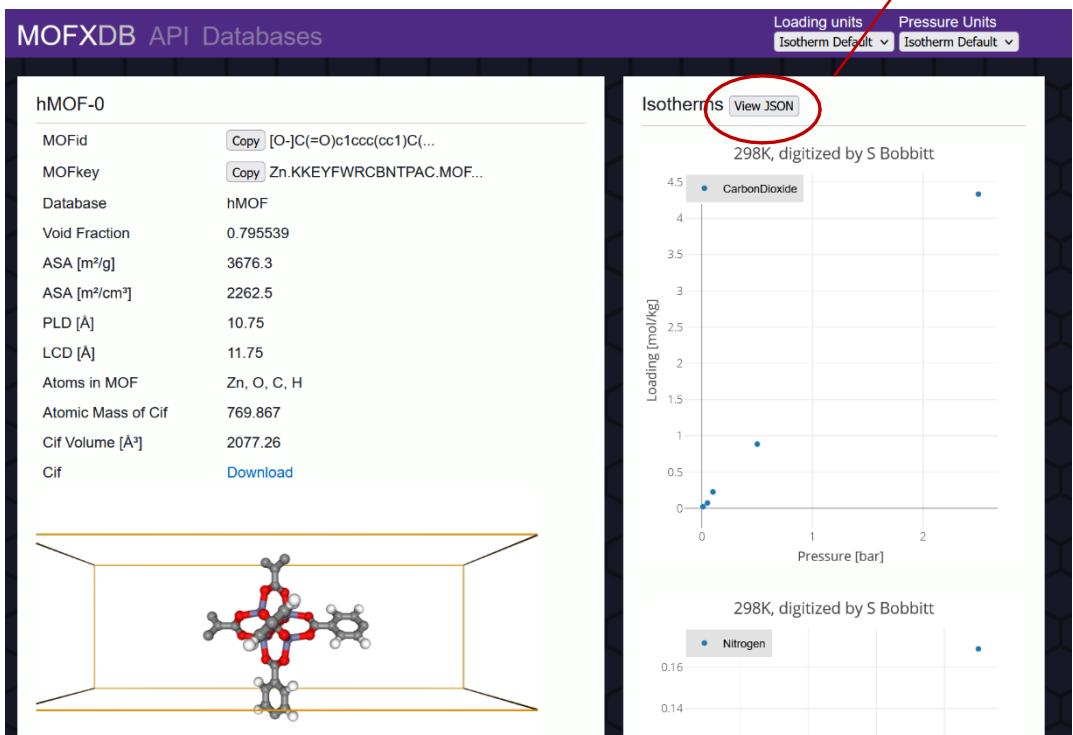
Download 86649 Results

Large downloads make take a long time.
To download an entire database go [here](#)

Download JSON files and CIFs

Name	Type	Compressed size	Password pr...	Size	Ratio	Date modified
FORXIU_clean-(id:176567).cif	CIF File	26 KB	No	204 KB	88%	10/31/2022 11:05 PM
FORXIU_clean-(id:176567).json	JSON File	29 KB	No	216 KB	87%	10/31/2022 11:05 PM
HABRAF_manual-(id:177096).cif	CIF File	10 KB	No	48 KB	81%	10/31/2022 11:05 PM
HABRAF_manual-(id:177096).json	JSON File	12 KB	No	57 KB	81%	10/31/2022 11:05 PM
ic5005374_si_003_clean-(id:177644).cif	CIF File	10 KB	No	65 KB	85%	10/31/2022 11:05 PM
ic5005374_si_003_clean-(id:177644).json	JSON File	13 KB	No	75 KB	84%	10/31/2022 11:05 PM
ICAQIO_clean-(id:177695).cif	CIF File	4 KB	No	33 KB	89%	10/31/2022 11:05 PM
ICAQIO_clean-(id:177695).json	JSON File	6 KB	No	43 KB	87%	10/31/2022 11:05 PM
ICAROV_clean-(id:177698).cif	CIF File	4 KB	No	33 KB	89%	10/31/2022 11:05 PM
ICAROV_clean-(id:177698).json	JSON File	6 KB	No	43 KB	87%	10/31/2022 11:05 PM
IVEKEA_clean-(id:178021).cif	CIF File	17 KB	No	138 KB	88%	10/31/2022 11:05 PM
IVEKEA_clean-(id:178021).json	JSON File	20 KB	No	149 KB	88%	10/31/2022 11:05 PM
IYOWID_manual-(id:178130).cif	CIF File	4 KB	No	33 KB	89%	10/31/2022 11:05 PM
IYOWID_manual-(id:178130).json	JSON File	6 KB	No	43 KB	87%	10/31/2022 11:05 PM
IZEPAF_clean-(id:178148).cif	CIF File	5 KB	No	40 KB	88%	10/31/2022 11:05 PM
IZEPAF_clean-(id:178148).json	JSON File	7 KB	No	50 KB	87%	10/31/2022 11:05 PM
IZEPEJ_clean-(id:178149).cif	CIF File	4 KB	No	27 KB	88%	10/31/2022 11:05 PM
IZEPEJ_clean-(id:178149).json	JSON File	6 KB	No	36 KB	86%	10/31/2022 11:05 PM
ja5b00365_si_002_clean-(id:178263).cif	CIF File	7 KB	No	45 KB	87%	10/31/2022 11:05 PM
ja5b00365_si_002_clean-(id:178263).json	JSON File	9 KB	No	56 KB	85%	10/31/2022 11:05 PM
ja512973b_si_003_auto-(id:185198).cif	CIF File	10 KB	No	40 KB	78%	10/31/2022 11:05 PM
ja512973b_si_003_auto-(id:185198).json	JSON File	12 KB	No	52 KB	79%	10/31/2022 11:05 PM
ja809985t_si_002_clean-(id:178283).cif	CIF File	17 KB	No	94 KB	83%	10/31/2022 11:05 PM
ja809985t_si_002_clean-(id:178283).json	JSON File	19 KB	No	105 KB	83%	10/31/2022 11:05 PM
ja5111317_ja5111317_si_002_auto-(id:18...	CIF File	9 KB	No	40 KB	78%	10/31/2022 11:05 PM
ja5111317_ja5111317_si_002_auto-(id:18...	JSON File	11 KB	No	52 KB	79%	10/31/2022 11:05 PM
JOZWOM_clean-(id:178459).cif	CIF File	4 KB	No	30 KB	88%	10/31/2022 11:05 PM
JOZWOM_clean-(id:178459).json	JSON File	6 KB	No	39 KB	86%	10/31/2022 11:05 PM

JSON file format


Single JSON file contains all adsorption data, simulation details, and meta-data (RASPA input files, cif)

Completely compatible with NIST adsorption database

NIST ISODB: <https://adsorption.nist.gov/isodb>

Dan Siderius, NIST


```
id: 15339
mofid: "[0-]C(=O)c1ccc(cc1)C(=O)[0-].[Zn][0]([Zn])([Zn])[Zn] MOFid-v1.pcu.cat0"
mofkey: "Zn.KKEYFWRCBNTPAC.MOFkey-v1.pcu\n"
hashkey: "eb66082e068e937a37608f1ebadd35947149ebd81c93a9fb14"
name: "hMOF-0"
void_fraction: 0.795539
surface_area_m2g: 3676.3
surface_area_m2cm3: 2262.5
pld: 10.75
lcd: 11.75
pxrd: null
pore_size_distribution: null
database: "hMOF"
batch_number: null
elements:
  0:
    symbol: "Zn"
    name: "Zinc"
  1:
    symbol: "O"
    name: "Oxygen"
  2:
    symbol: "C"
    name: "Carbon"
  3:
    symbol: "H"
    name: "Hydrogen"
cif: "data_functionalizedCrystal\n_audit_creation_method\t'MofGen! by Chris W.\n\\n_cell_angle_gamma\t90.016641\\nloop_\\n_atom_site_label\\n_atom_site_type_\n\\nO7\\t0\\t1.582813\\t-0.570635\\t-0.271317\\nO8\\t0\\t1.453911\\t-0.271191\\t-0.1\n\\t-0.740891\\t-0.441609\\nO17\\t0\\t1.453785\\t-0.740834\\t-0.570649\\nC18\\tC\\t-\n\\nC26\\tC\\t1.585632\\t-0.950617\\t-0.439056\\nC27\\tC\\t1.585700\\t-1.060341\\t-0.1\n\\t-0.115206\\t-0.506237\\nC36\\tC\\t1.451328\\t-0.438653\\t-0.951848\\nC37\\tC\\t-\n\\nH45\\tH\\t1.396672\\t-0.383891\\t-1.106240\\nH46\\tH\\t1.396543\\t-1.105022\\t-0.1"
url: "/mofs/15339.json"
```

We encourage the community to adopt this format as a standard for sharing adsorption data.

Compatible with Adsorption Information Format!

Can readily convert AIF to JSON which is amenable to cheminformatics, ML tools, etc.

Includes all simulation details

Includes original RASPA input files with all information (GCMC cycles, temp, cut off radius, etc.)

Lists force field info for adsorbents and adsorbates

Contains DOI and link for original publications

```
▼ simin:           "SimulationType          MonteCarlo\nNumberofCycles          2000\nNumberofInitializationCycles 2000'\n  0.8000\nExternalTemperature 77\nExternalPressure 2E5\n\n\nComponent 0 MoleculeName          hydrogen\nCreateNumberOfMolecules 0\n"\n\nDOI:             "10.1021/acs.jpcc.6b08729"\n\n▼ doi_url:        "https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b08729?casa_token=7Dx9VmjlRIkAAAAAA:CbUhQ50anABy5Q_YY-QUM-aA1Gci3ui"\n\n  date:            "2021-57-03"\n\n  temperature:     77\n\n  adsorbent_forcefield: "UFF"\n\n  molecule_forcefield: "Darkrim-Levesque"
```

All of the data in MOFX-DB should be completely reproducible with the information available in the JSON file

MOFkey & MOFid

Ben Bucior

MOFXDB API Databases

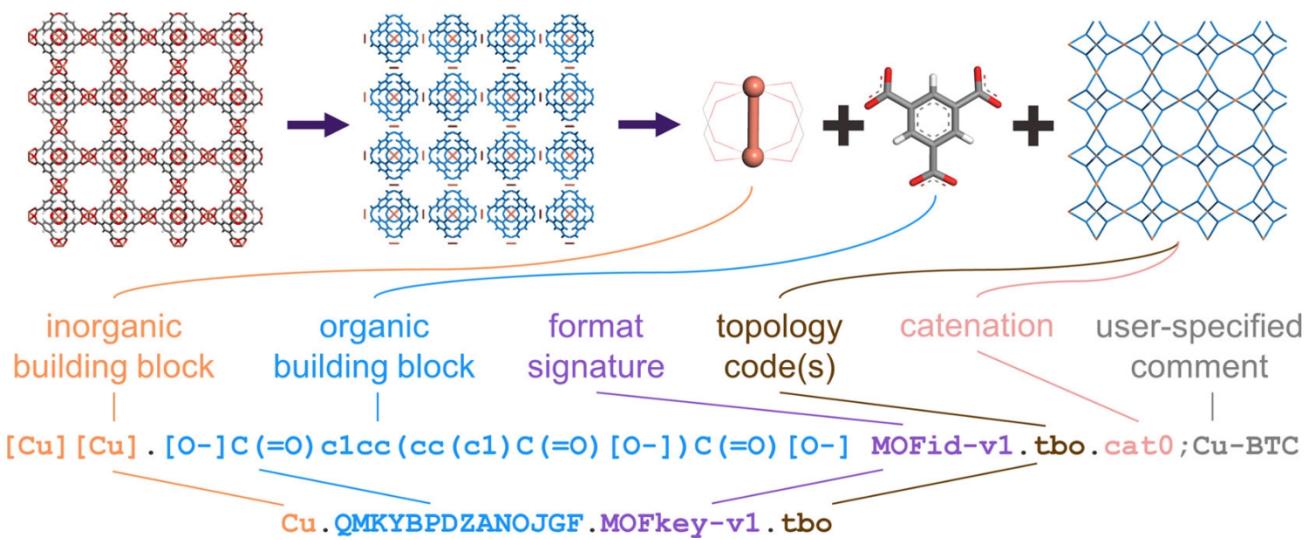
hMOF-0

MOFid

[Copy](#) [O-]C(=O)c1ccc(cc1)C(=O)[O-]

MOFkey

[Copy](#) Zn.KKEYFWRCBNTPAC.MOF...


<https://snurr-group.github.io/web-mofid/>

Bucior et al, *Crystal Growth & Design*, **19**, 6682-6697, 2019

MOFkey and MOFid are ways to generate unique descriptors for MOF structures.

MOFid: based on SMILES

MOFkey: based on InChIKeys

MOFX-DB contains unique MOFkey and MOFid strings for every structure.

Can search by MOFkey or MOFid to find MOFs.

Can be used for cheminformatics analysis and machine learning.

Python API

<https://mof.tech.northwestern.edu/api>

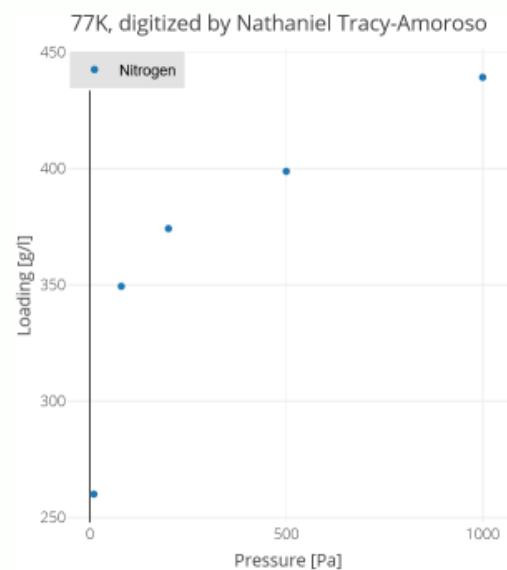
We have an easy to use Python package: mofdb_client

Can search and fetch specific data automatically, download files, and feed data into your machine learning workflow

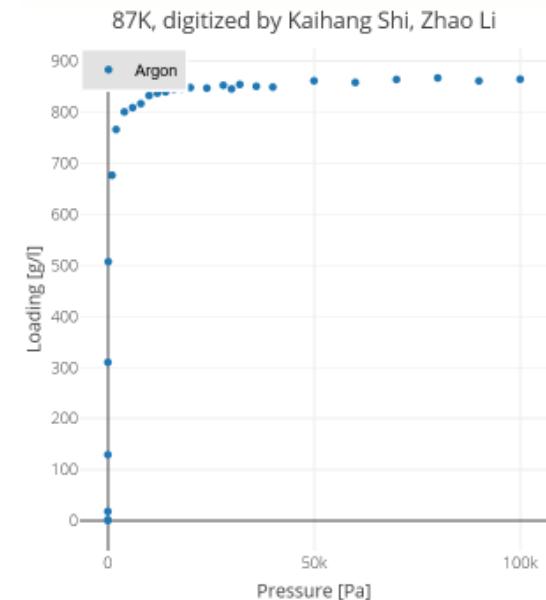
Use the package

Documentation [on Github here](#)

```
$ python3 -m pip install mofdb_client
from mofdb_client import fetch
for mof in fetch(vf_min=0.5, vf_max=0.99):
    print(f"{} has {len(mof.isotherms)} isotherms and elements {[str(e) for e in mof.elements]}")
    print(f"This mof's cif file starts with: '{mof.cif.splitlines()[1]}'")
```

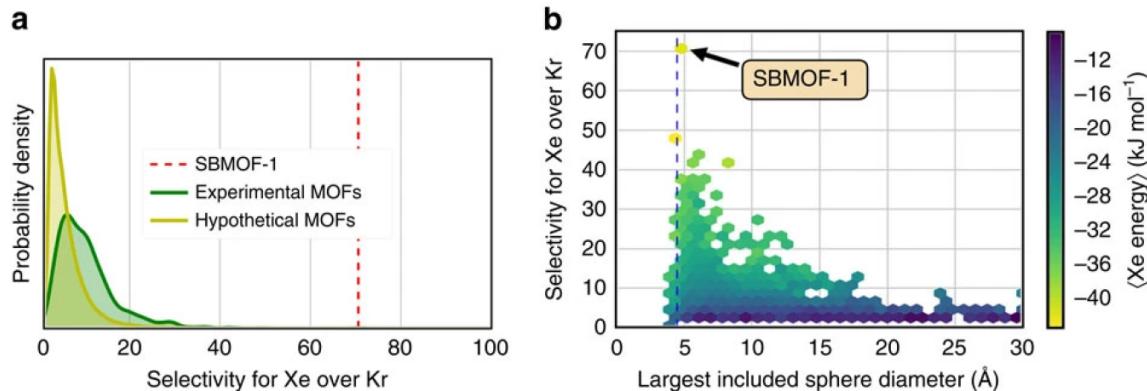

```
Mof UTEWUM_clean has 2 isotherms and elements ['Cu', 'H', 'C', 'N']
This mof's cif file starts with: '_audit_creation_date' 2014-07-02'
Mof ZECKID_clean has 1 isotherms and elements ['Cu', 'H', 'C', 'N', 'O']
This mof's cif file starts with: '_audit_creation_date' 2014-07-02'
Mof AQOMAW_clean has 2 isotherms and elements ['N', 'C', 'H', 'Co', 'Cl', 'O']
This mof's cif file starts with: '_cell_length_a' 18.8345'
Mof AQOLOJ_clean has 2 isotherms and elements ['N', 'C', 'H', 'Co', 'Cl']
This mof's cif file starts with: '_cell_length_a' 18.794'
Mof SENWOZ_clean has 2 isotherms and elements ['Zn', 'H', 'C', 'O']
This mof's cif file starts with: '_audit_creation_date' 2014-07-02'
Mof IYUCIQ_clean has 2 isotherms and elements ['Dy', 'O', 'N', 'C', 'H']
```

Nitrogen and Argon Isotherms



Database contains simulated nitrogen (77K) and argon (87K) isotherms for all CoREMOF structures.

Can be used as a guide for experimental activation.



Nitrogen
77 K

Argon
87 K

Finding MOFs with good performance for Xe/Kr separation

Banerjee et al, Nature Communications, 7, 11831, 2016

Search for LCD around 5.1 Å, PLD > 4.0 Å, and greater than 200 m²/g SA

MOFXDB API Databases

Filter results

Name	Void Fraction	ASA [m ² /cm ³]	ASA [m ² /g]	PLD [Å]	LCD [Å]
tobmof-3500	0.4	503.0	316.0	4.7	5.3
tobmof-3836	0.45	535.0	350.0	4.1	5.3
tobmof-4188	0.47	232.0	230.0	4.0	5.0
tobmof-4199	0.44	303.0	266.0	4.2	5.2
tobmof-4905	0.48	266.0	247.0	4.2	5.0
tobmof-4906	0.46	420.0	353.0	4.7	5.3
tobmof-6368	0.62	607.0	592.0	4.2	5.1
tobmof-6425	0.7	1777.0	1858.0	4.6	5.3

Showing 1 to 8 of 8 entries
Table only shows up to 100.
Download 8 Results

We find 8 MOFs with similar properties.

Some of them have comparable selectivity and higher capacity than SBMOF-1!

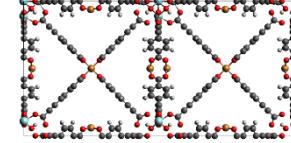
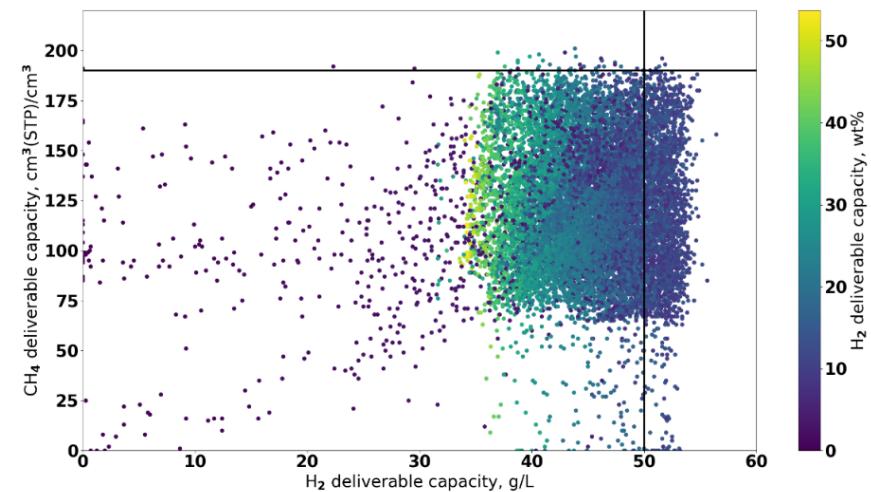
Name	Void Fraction	SA (m ² /g)	PLD (Å)	LCD (Å)	Xe (mol/kg)	Kr (mol/kg)	Selectivity
SBMOF-1*	0.25	145	4.2	5.1	1.2 (0.2 bar)	0.9 (0.8 bar)	16
tobmof-4188**	0.47	230	4	5	3.9	1	15.6
tobmof-4906**	0.46	353	4.7	5.3	2.5	0.8	12.5

*SBMOF-1: Banerjee, Nat. Comm. 2016

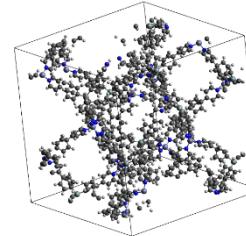
**tobmofs: Colon Cryst. Growth Des 2017

Multipurpose MOFs

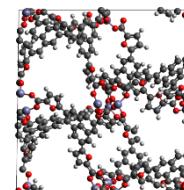
Previous studies that generated this data focused on finding the **best** candidate for a specific application.

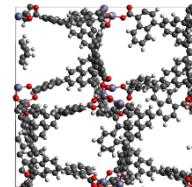


We can use data from multiple studies to find MOFs that are good for multiple applications!

Example: Methane and hydrogen storage


Targets:

190 cm³(STP)/cm³ methane capacity


50 g/L hydrogen capacity


tobmof-3115

tobmof-4253

tobmof-7773

tobmof-7776

Void Frac	0.82-0.86
Pore size (LCD)	10.5-15.6 Å

Conclusions

This work will (hopefully) appear soon in Journal of Chemical & Engineering Data

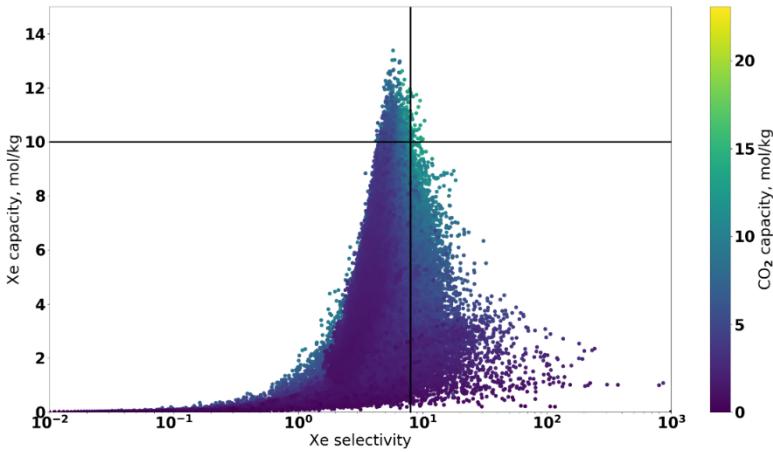
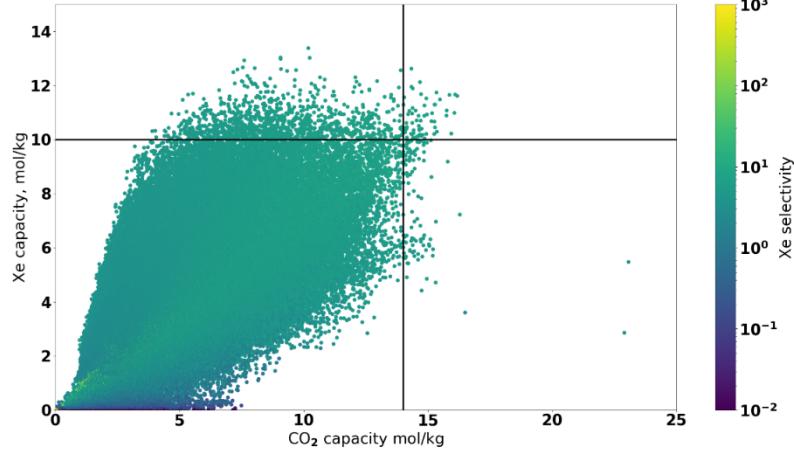
1. Millions of data points about adsorption in MOFs & zeolites now available
2. All simulation details and metadata available
3. Uses JSON format that is interoperable with NIST database. We hope this standard will be adopted by the community.
4. Python API to make searching and downloading data easy

Please download the data and go wild with machine learning!

URL: mof.tech.northwestern.edu

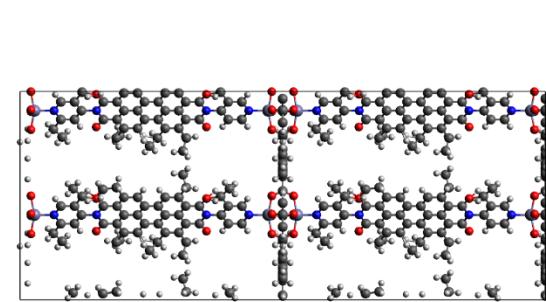
Search Commands

Name	Void Fraction	ASA [m ² /cm ³]	ASA [m ² /g]	PLD [Å]	LCD [Å]
tobmof-300	0.75	2048.0	2693.0	7.5	12.4
tobmof-2378	0.75	2090.0	2965.0	6.6	13.1
tobmof-3110	0.72	2055.0	2577.0	6.5	12.0
tobmof-3714	0.74	2003.0	2701.0	9.9	12.9
tobmof-5830	0.71	2055.0	2751.0	6.9	18.4
tobmof-5977	0.71	2037.0	3091.0	7.1	15.8
tobmof-6826	0.75	2085.0	3391.0	6.2	12.5
tobmof-6825	0.75	2085.0	3544.0	5.7	12.2

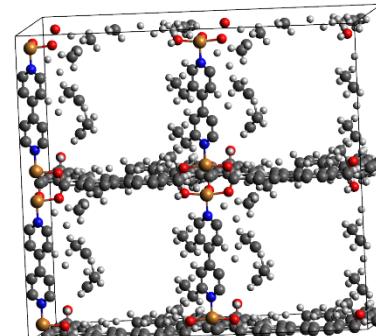


For example, to run the same search query from Figure 1, a program could issue a GET request as

https://mof.tech.northwestern.edu/mofs.json?database=Tobacco&vf_min=0.25&vf_max=0.75&sa_m2g_min=2500&sa_m2g_max=5000&pld_min=4.0&lcd_min=12.0&gases=Methane

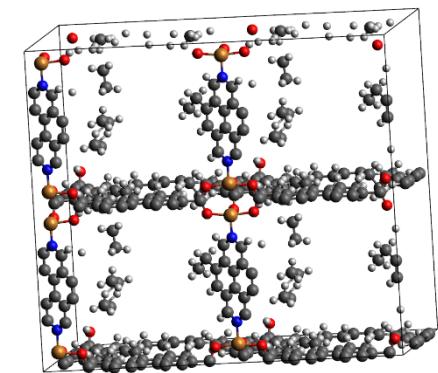
to encode all the relevant parameters and receive a filtered list of MOFs. Not all of the search criteria are required: the API will only filter by properties that are specified in the query. For example, to search the ToBaCCo database by surface area, a program could use a query of


https://mof.tech.northwestern.edu/mofs.json?database=Tobacco&sa_m2g_min=2500&sa_m2g_max=5000

CO₂ capture and Xe/Kr separations



Find MOFs with good performance for both CO₂ capture (natural gas upgrading) and Xe/Kr separations


MOF name	Void Frac.	SA (m ² /g)	PLD (Å)	LCD (Å)	Xe Cap.	Kr Cap.	Xe select.	CO ₂ Cap. (mol/kg)
					(mol/kg)	(mol/kg)		
hMOF-056488	0.80	3703	5.25	7.25	10.1	4.2	9.7	14.5
hMOF-36162	0.83	2754	8.25	9.75	10.4	4.9	8.4	14.7
hMOF-5067108	0.85	2842	8.25	9.75	10.1	4.9	8.2	14.6

hMOF-5056488

hMOF-36162

hMOF-5067108