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Nuclear Fuel Cladding

• Current nuclear fuel cladding is primarily a 

zirconium alloy

• Fails under very high temperatures and loses 

strength 

• Typically happens during Loss of Coolant 

Accidents (LOCA)

• Potential alternative is a SiC fiber reinforced 

tubular composite

• Excellent chemical compatibility with coolant and 

fuel systems in high temperature gas cooled fast 

reactors
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CVI SiC-SiC Composites

1. Hi-Nicalon Type-S SiC fibers (~10 μm 

diameter) are bundled and braided into 

tows to make a plain-weave configuration

2. 100-500nm thick PyC interphase layer is 

added by chemical vapor deposition

3. Matrix is densified throughout the 

composite via chemical vapor infiltration

4. Possible outer coating layer afterward 

(EBC, etc.)
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Sources of Failure in SiC-SiC Composite Tubular Cladding

• Complex stress state

• Prefilling of tubes with helium 

• Accumulation fission gas during operation

• Fuel pellet swelling and pellet-cladding interactions 

• LOCA failures 

• Rapid temperature rise and uneven expansion of fuel pellet

• Inherent microstructural heterogeneity

• Constituents: fibers, interphase, and matrix phase

• Geometry: fibers and tows in different orientations 

• Microstructural variabilities: porosity, local density fluctuations, tube thickness variations, weave architecture 

imperfections, etc

4

 Contributes to scatter in strength 
and uncertainty in performance

 Incorporation of strength 
variability into design for reliable 
operation 



Measuring Fiber Diameter5
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Porosity Distribution

Using X-ray computed tomography to measure the porosity shape, size, and 
distribution in the SiC-SiC composite
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Porosity Distribution7



Nanoindentation

Indents were displacement-controlled 
at a depth of 200 nm with room 
temperature ambient conditions

At least 10 indentations per constituent
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Mechanical Testing

• During operation, fuel pellet swelling and pellet-cladding interactions 
introduces complex stress states into the cladding.

• Furthermore, LOCA can cause a rapid rise in temperature causing 
uneven expansion of the fuel pellets, further introducing complexity 
into the stress state.

• Several different loading scenarios were chosen to examine how the 
material behaves to help give a full range of data for failure envelope 
validation:
• Axial compression
• Tensile hoop burst
• Flexure
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Mechanical Testing - Architectures11
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Axial Compression

Two forms of failure identified:

1. Macroscopic failure away from 
the loading surface (gauge)

2. Macroscopic failure in the 
vicinity of the loading surface 
(edge)
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Axial Compression Load-Displacement Curves13
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Varying Unit Cell Axial Compression14
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Tensile Hoop Burst
Composite is loaded via internal 
pressurization from radial expansion of 
an elastomeric insert

Elastomeric insert expands under uniaxial 
compressive loading of pushrods and 
exerts a uniform radial pressure on the 
inside of the SiC-SiC tube

Hoop tensile strength determined from 
the resulting maximum pressure 
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Tensile Hoop Burst – Strength Results16



Tensile Hoop Burst – Stress/Strain Curves18



Tensile Hoop Burst - 45° 3-ply Biaxial Failure Mode19

t = 0.4st = 0.2st = 0s



Flexural Test20
20

Loading pins

Support pins

Failure of a ceramic specimen 

is often a function of a critical 

surface flaw.

These critical flaws require a 

tensile stress state to grow.

The traditional 4-point bend 

test does not always subject 

the critical flaw to a tensile 

stress state.



Flexural Test21
21

Instead, rotate the 

specimen as it is being 

loaded via rollers and it will 

have a higher probability 

to expose the critical flaw.



Novel Rotating Flexural Test Design22



Flexural Test - Results23



Summary

• Heterogeneity was quantified using digital 
image processing algorithms and other 
methods
• Fiber diameter
• Porosity Distribution
• Braiding angle
• Nanoindentation 

• Used a variety of loading scenarios and 
stress states to identify the composite’s 
architecture influences
• Axial compression
• Tensile hoop burst
• Novel rotating flexural 
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