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Nuclear Fuel Cladding

Current nuclear fuel cladding is primarily a
zirconium alloy

Fails under very high temperatures and loses
strength

- Typically happens during Loss of Coolant
Accidents (LOCA)

Potential alternative is a SiC fiber reinforced
tubular composite
« Excellent chemical compatibility with coolant and

fuel systems in high temperature gas cooled fast
reactors
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s 1 CVI SIC-SIC Composites

1. Hi-Nicalon Type-S SiC fibers (~10 pm
diameter) are bundled and braided into
tows to make a plain-weave configuration

2. 100-500nm thick PyC interphase layer is
added by chemical vapor deposition

3. Matrix is densified throughout the
composite via chemical vapor infiltration

4. Possible outer coating layer afterward
(EBC, etc.)
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4 | Sources of Failure in SiC-SiC Composite Tubular Cladding

*  Complex stress state

«  Prefilling of tubes with helium

*  Accumulation fission gas during operation

*  Fuel pellet swelling and pellet-cladding interactions
*  LOCA failures

* Rapid temperature rise and uneven expansion of fuel pellet

* Inherent microstructural heterogeneity

«  Constituents: fibers, interphase, and matrix phase

*  Geometry: fibers and tows in different orientations

v" Contributes to scatter in strength
and uncertainty in performance

v" Incorporation of strength
variability into design for reliable
operation

*  Microstructural variabilities: porosity, local density fluctuations, tube thickness variations, weave architecture

imperfections, etc

o
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5 ‘ Measuring Fiber Diameter m
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6 ‘ Porosity Distribution

Using X-ray computed tomography to measure the porosity shape, size, and
distribution in the SiC-SiC composite

te system




Porosity Distribution
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> 1 Nanoindentation

Fiber Matrix
366 = 36 GPa 477 + 47 GPa
Indents were displacement-controlled | «1-si€ Fiber

at a depth of 200 nm with room
temperature ambient conditions

At least 10 indentations per constituent




0 I Mechanical Testing

« During operation, fuel pellet swelling and pellet-cladding interactions
introduces complex stress states into the cladding.

« Furthermore, LOCA can cause a rapid rise in temperature causing
uneven expansion of the fuel pellets, further introducing complexity
into the stress state.

 Several different loading scenarios were chosen to examine how the
material behaves to help give a full range of data for failure envelope

validation:
Axial compression

« Tensile hoop burst
*  Flexure




1 ‘ Mechanical Testing - Architectures
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12 ‘ Axial Compression

Two forms of failure identified:
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13 ‘ Axial Compression Load-Displacement Curves
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12 1 Varying Unit Cell Axial Compression
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5 | Tensile Hoop Burst @i

Composite is loaded via internal '
pressurization from radial expansion of
Lubricant
/ﬁm

Clearance 2a h

an elastomeric insert

NNF
A |

Elastomeric insert expands under uniaxial
compressive loading of pushrods and
exerts a uniform radial pressure on the
inside of the SiC-SiC tube

Hoop tensile strength determined from
the resulting maximum pressure
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16 ‘ Tensile Hoop Burst - Strength Results
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s | Tensile Hoop Burst - Stress/Strain Curves @i
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19 | Tensile Hoop Burst - 45° 3-ply Biaxial Failure Mode
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0 | Flexural Test

Failure of a ceramic specimen

Loading pins . . o
/ \\ is often a function of a critical

l I surface flaw.

These critical flaws require a

tensile stress state to grow.

\ / The traditional 4-point bend

Support pins
test does not always subject

the critical flaw to a tensile

stress state.



>1 | Flexural Test @d

l l Instead, rotate the

specimen as it is being

]
loaded via rollers and it will
l \ / l have a higher probability
|

to expose the critical flaw.



Novel Rotating Flexural Test Design
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23 ‘ Flexural Test - Results
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22 1 Summary

* Heterogeneity was quantified using digital
image processing algorithms and other
methods

 Fiber diameter

o Porosity Distribution 350F 60° 2-ply biaxial
* Braiding angle
« Nanoindentation

45° 2-ply triaxial

Hoop Stress (MPa)

« Used a variety of loading scenarios and
stress states to identify the composite’s 100}
architecture influences 501
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