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Uncertainty Quantification (UQ) for geologic disposal safety 
assessment (GDSA)
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NW Repository

Points where 129I tracked

GDSA workflow at Sandia is deploying an 
unprecedented level of model fidelity for UQ studies in 
this application area.

~1.5 hours on 512 cores per simulation) 
𝒪(1000) model evaluations for current UQ studies

Multimodel methods can 
make UQ studies more 
efficient.
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Idea: exploit lower-
fidelity, cheaper 
models to lower 
cost for same 
accuracy
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Idea: exploit lower-
fidelity, cheaper 
models to lower 
cost for same 
accuracy

Discretization

Modeling assumptions



There are two classes of multimodel methods5

• Multilevel Monte Carlo (MLMC) [1]
• Multifidelity Monte Carlo (MFMC) [2]
• Approximate Control Variates (ACV) [3]
• Multilevel Best Linear Unbiased Estimate (MLBLUE) [4]

Sampling-based

• Multifidelity Gaussian Processes [5]
• Multifidelity Polynomial Chaos Expansions [6]
• Multilevel/multi-index stochastic collocation [7,8]
• MFNets[9]

Surrogate-based



There are two classes of multimodel methods6

• Unbiased
• Performance independent of number of parameters, output smoothness
• Theoretical development has focused on functions of moments

• More work needed for efficient estimation of CDFs, tail probabilities, calibration

Sampling-based

• Build once, use for multiple UQ tasks (forward propagation, SA, calibration)
• Can exploit relationships that sampling-based can’t (e.g. sparsity in discrepancy 

between two models)
• Same weaknesses as their single-fidelity counterparts: e.g. GPs, PCEs can’t handle 

100s of inputs, discontinuous model outputs.

Surrogate-based



Sampling-based methods7
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Sampling-based methods – control variates8
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𝜌! ≈ 1 → orders of 
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variance



Sampling-based methods – beyond control variates9
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Best sampling-based method depends on model ensemble

Each method combines models and samples differently.
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Which one performs best is a nonintuitive function of model costs and correlations. 

In practice model costs and correlations have to be estimated through a pilot study.

Dakota can project performance of each method so the user can select 
the best one for their problem. Methods currently implemented:

• MLMC
• MFMC
• MLCV 

• ACV-MF
• ACV-IS



Surrogate-based methods11
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Images courtesy of [6]

Hierarchical surrogates Nonhierarchical surrogates

Single-fidelity surrogate:

Image courtesy of [9]

More computationally efficient if 
need fewer samples to resolve 
discrepancy vs original high-fidelity 
model.
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x
y

10 m 20 m 40 m
!!! [m2] at z = 240 m

Mesh size [m] Core time [s] Relative cost

10 9822.8 1.0

20 329.7 3.36e-2

40 22.0 2.24e-3

Parameter Description Distribution

rateUNF Waste form bulk dissolution 
rate [yr-1] log𝒰[10!", 10!#]

kGlacial Glacial aquifer permeability 
[m2] log𝒰 10!$%, 10!$&

permDRZ DRZ permeability [m2] log𝒰[10!$', 10!$#]

permBuffer Buffer permeability [m2] log𝒰[10!(), 10!$*]

pBuffer Buffer porosity 𝒰[0.3, 0.5]

wpBreachTime Waste package breach time 
[yr] 𝒰[2500,10000]

QoI: log10  Peak 129I concentration



Multimodel methods projected to be almost 2 orders of 
magnitude more accurate for same cost

Method Projected estimator 
variance

Projected MC variance
Projected variance

Monte Carlo 1.78e-3 1.0

Multilevel 1.22e-4 15.7

Multifidelity 2.21e-5 80.6

ACV MF 2.85e-5 62.5
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25 pilot samples, equivalent cost of 100 HF evaluations



Multifidelity polynomial chaos expansion (PCE) exhibits same 
challenges for discontinuous outputs as standard PCE
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MF PCE was constructed at equivalent cost of ~22 high-fidelity model evaluations.



• Which method is best depends on model ensemble, goals of 
analysis

• Multimodel methods can significantly decrease the 
computational burden of uncertainty analyses (nominally by 
orders of magnitude)

• More information on pros and cons discussed methods in 
conference paper
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Thanks!
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