

Sandia
National
Laboratories

Multimodel Methods for Uncertainty Quantification of Repository Systems

Teresa Portone, Michael Eldred, Gianluca
Geraci, Laura Swiler

International High-Level Radioactive Waste Management Conference at the
2022 ANS Winter Meeting

Phoenix, AZ, USA, Nov. 13-17, 2022

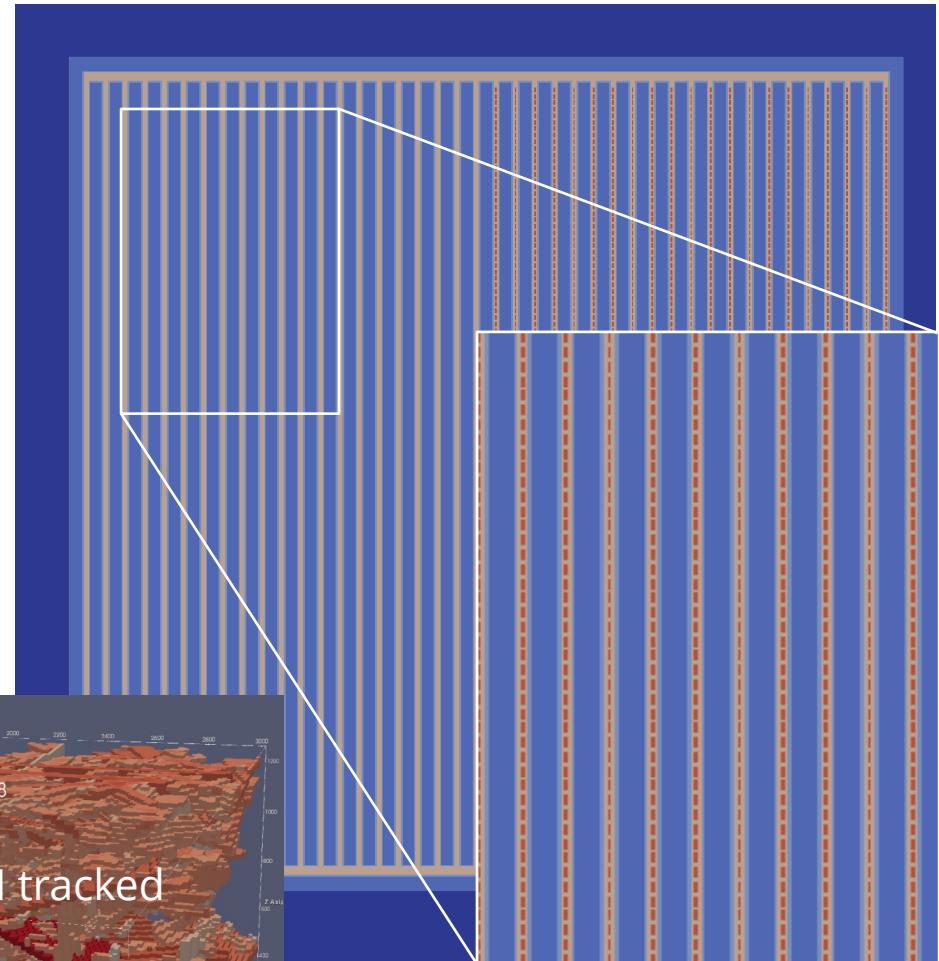
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Uncertainty Quantification (UQ) for geologic disposal safety assessment (GDSA)

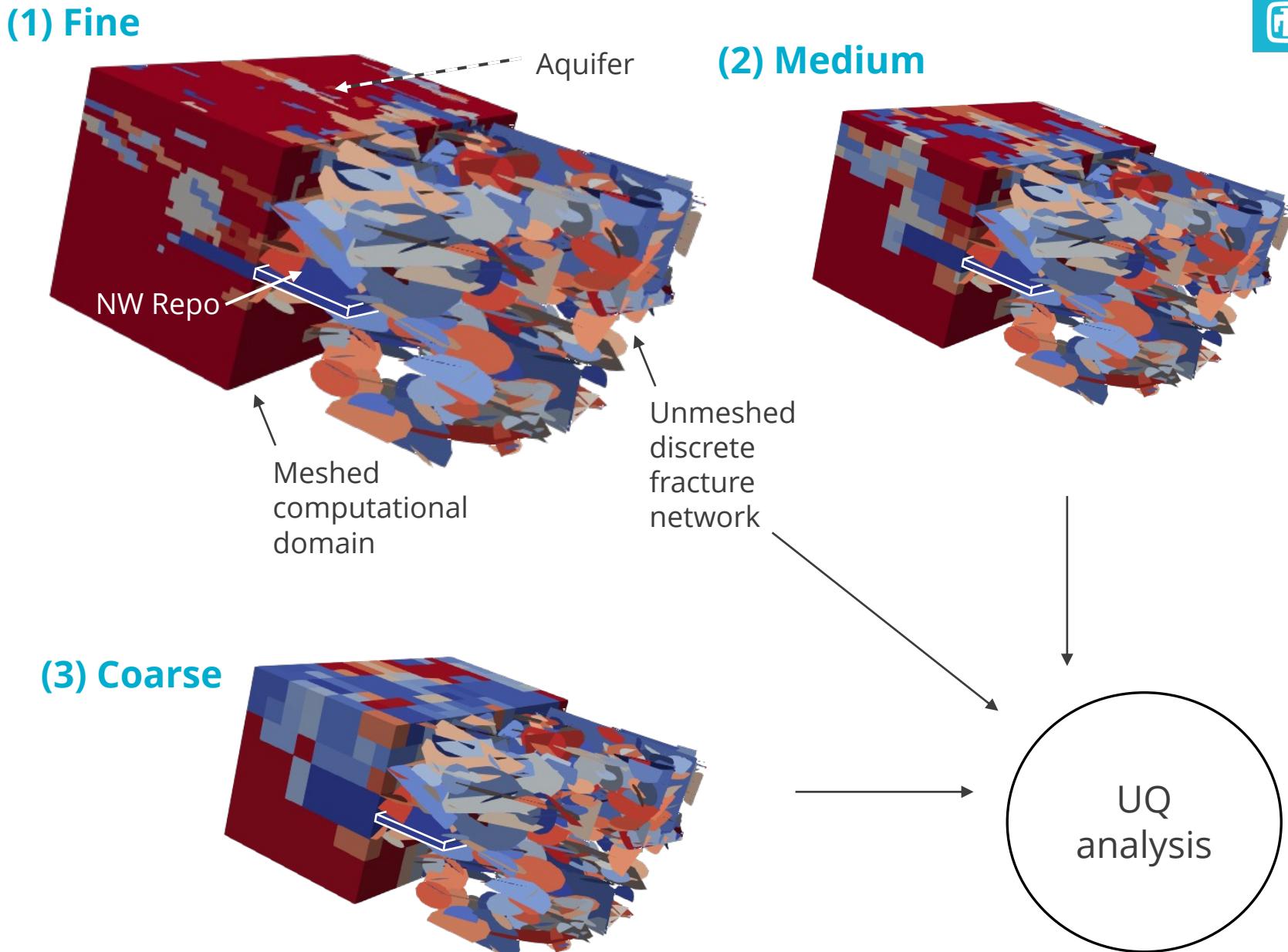
GDSA workflow at Sandia is deploying an unprecedented level of model fidelity for UQ studies in this application area.

~1.5 hours on 512 cores per simulation)
 $\mathcal{O}(1000)$ model evaluations for current UQ studies

Multimodel methods can make UQ studies more efficient.

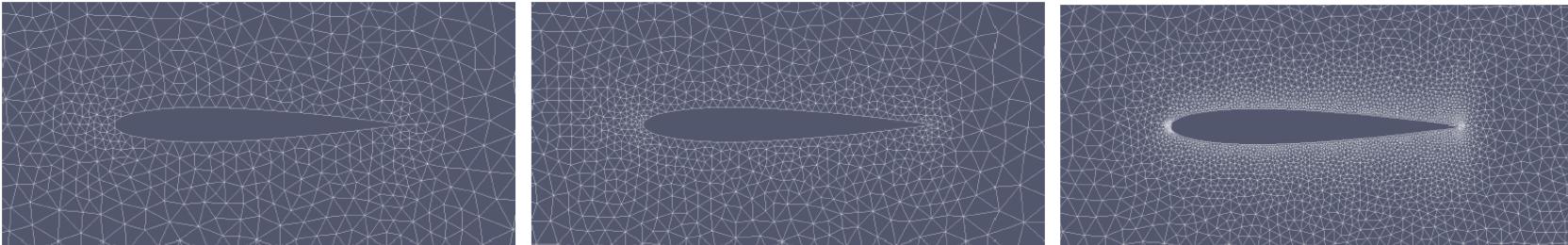


Idea: exploit lower-fidelity, cheaper models to lower cost for same accuracy

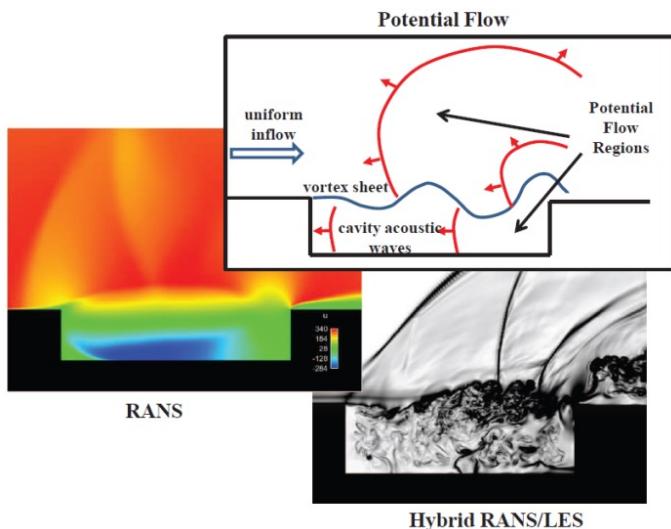


Idea: exploit lower-fidelity, cheaper models to lower cost for same accuracy

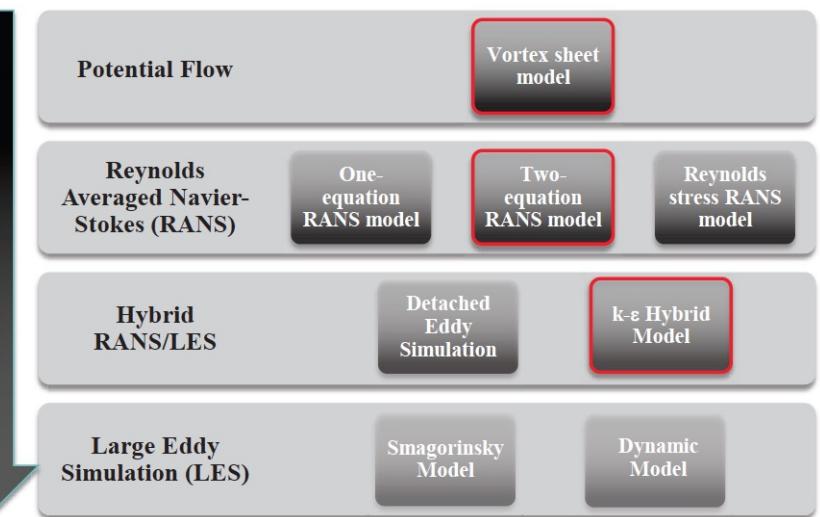
Discretization



Modeling assumptions



Increasing Model Fidelity



There are two classes of multimodel methods

Sampling-based

- Multilevel Monte Carlo (MLMC) [1]
- Multifidelity Monte Carlo (MFMC) [2]
- Approximate Control Variates (ACV) [3]
- Multilevel Best Linear Unbiased Estimate (MLBLUE) [4]

Surrogate-based

- Multifidelity Gaussian Processes [5]
- Multifidelity Polynomial Chaos Expansions [6]
- Multilevel/multi-index stochastic collocation [7,8]
- MFNets[9]

There are two classes of multimodel methods

Sampling-based

- Unbiased
- Performance independent of number of parameters, output smoothness
- Theoretical development has focused on functions of moments
 - More work needed for efficient estimation of CDFs, tail probabilities, calibration

Surrogate-based

- Build once, use for multiple UQ tasks (forward propagation, SA, calibration)
- Can exploit relationships that sampling-based can't (e.g. sparsity in discrepancy between two models)
- Same weaknesses as their single-fidelity counterparts: e.g. GPs, PCEs can't handle 100s of inputs, discontinuous model outputs.

$$\widehat{M}(\theta) = \frac{1}{N} \sum_{i=1}^N M(\theta^{(i)}), \quad \theta^{(i)} \sim p(\theta) \text{ i. i. d.}$$

$$\mathbb{V}[\widehat{M}] = \frac{\mathbb{V}[M]}{N}$$

Sampling-based methods – control variates

$$M_1(\theta)$$

$$c_1 = \frac{C_1}{C} \ll 1$$

$$\text{corr}(M, M_1) = \rho$$

$$\widehat{M}_{CV}(\theta) = \widehat{M}(\theta) + \alpha(\widehat{M}_1(\theta) - \mathbb{E}[M_1]) \quad \mathbb{E}[\widehat{M}_{CV}(\theta)] = \mathbb{E}[M] \xleftarrow{\text{Unbiased}}$$

$$\mathbb{V}[\widehat{M}_{CV}(\theta)] = \frac{1}{N}(\mathbb{V}[M] + \alpha^2 \mathbb{V}[M_1] + 2\alpha \text{Cov}[M, M_1])$$

$$\alpha^* = \min_{\alpha} \mathbb{V}[\widehat{M}_{CV}(\theta)] = -\frac{\text{Cov}[M, M_1]}{\mathbb{V}[M_1]}$$

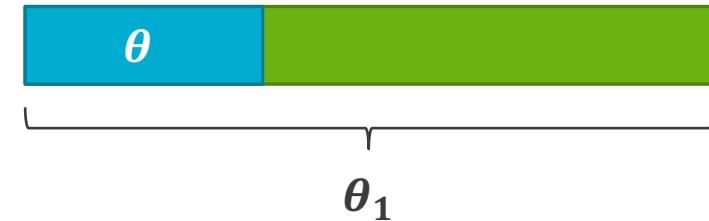
$$\mathbb{V}[\widehat{M}_{CV}(\theta)] = \frac{\mathbb{V}[M]}{N}(1 - \rho^2) \quad \xleftarrow{\rho^2 \approx 1 \rightarrow \text{orders of magnitude reduction in variance}}$$

Sampling-based methods – beyond control variates

$$\hat{M}_{CV}(\theta) = \hat{M}(\theta) + \alpha(\hat{M}_1(\theta) - \mathbb{E}[M_1]) \quad \text{Have to estimate this too}$$

Multifidelity Monte Carlo [2]:

$$\hat{M}_{MFMC} = \hat{M}(\theta) + \alpha(\hat{M}_1(\theta) - \hat{M}_1(\theta_1))$$



$$\alpha^* = -\frac{\rho\sqrt{\mathbb{V}[M]}}{\sqrt{\mathbb{V}[M_1]}}$$

$$r_1^* = \sqrt{\frac{\text{Cost}(M)\rho^2}{\text{Cost}(M_1)(1 - \rho^2)}} \quad N_1 = \lceil r_1 N \rceil$$

$$\mathbb{V}[\hat{M}_{MFMC}] = \frac{\mathbb{V}[M]}{N} \left(1 - \rho^2 \left(\frac{r_1 - 1}{r_1} \right) \right)$$

Best sampling-based method depends on model ensemble

$$\mathbb{V}[\widehat{M}_{MFMC}] = \frac{\mathbb{V}[M]}{N} \left(1 - \rho^2 \left(\frac{r_1 - 1}{r_1} \right) \right)$$

$$r_1 = \sqrt{\frac{\text{Cost}(M)\rho^2}{\text{Cost}(M_1)(1 - \rho^2)}}$$

Each method combines models and samples differently.

Which one performs best is a nonintuitive function of model costs and correlations.

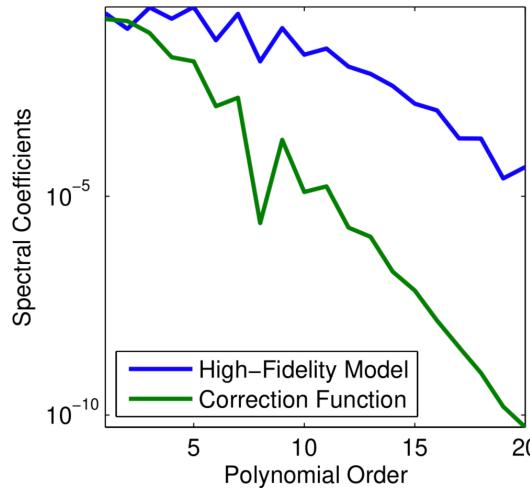
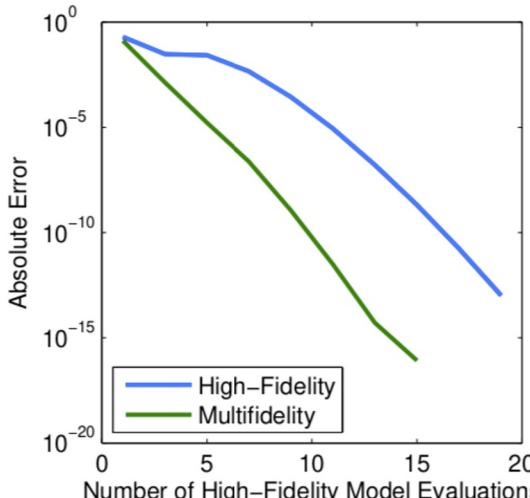
In practice model costs and correlations have to be estimated through a pilot study.

Dakota can project performance of each method so the user can select the best one for their problem. Methods currently implemented:

- MLMC
- MFMC
- MLCV
- ACV-MF
- ACV-IS

Surrogate-based methods

Single-fidelity surrogate: $M(\theta) \approx f(\theta)$



Hierarchical surrogates

$$M_1(\theta) \approx f_1(\theta)$$

$$M(\theta) - M_1(\theta) \approx f_{\Delta}(\theta)$$

$$M(\theta) \approx f_1(\theta) + f_{\Delta}(\theta)$$

More computationally efficient if need fewer samples to resolve discrepancy vs original high-fidelity model.

Nonhierarchical surrogates

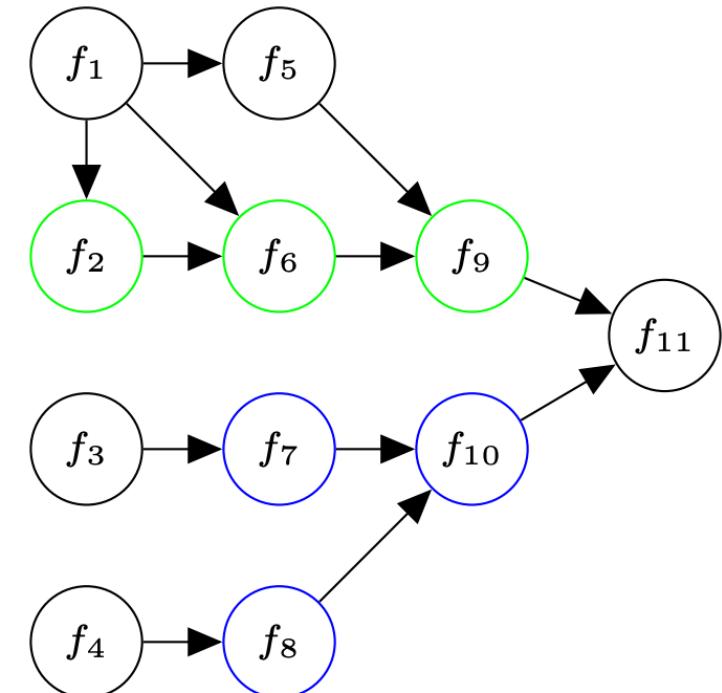
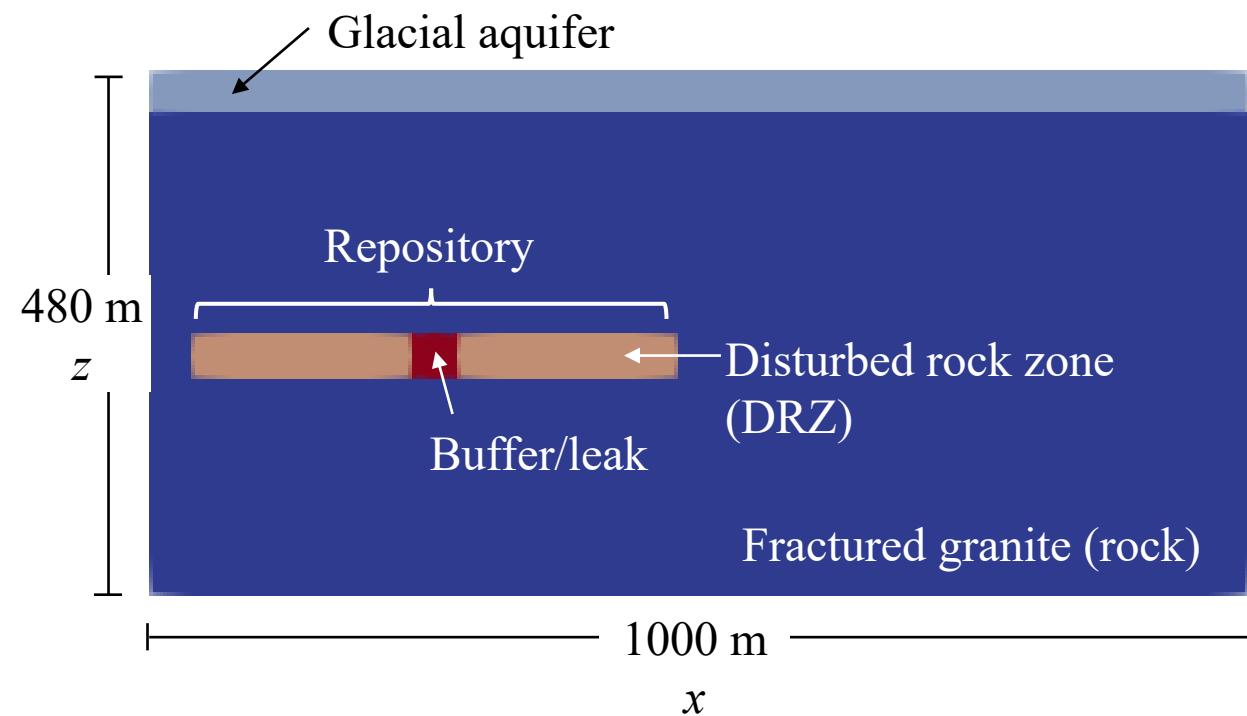
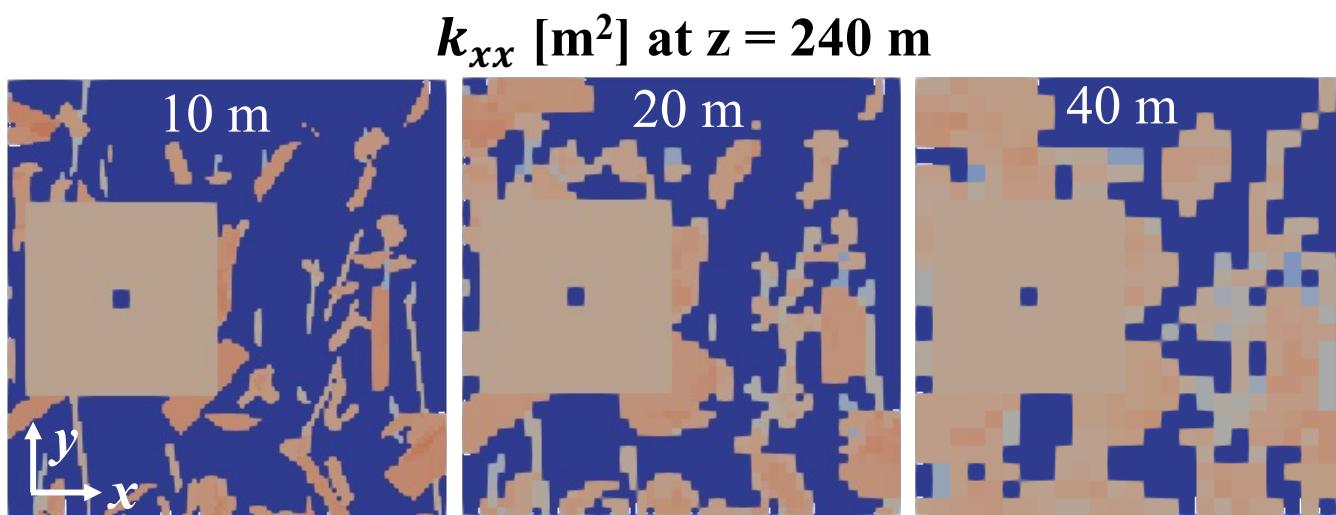
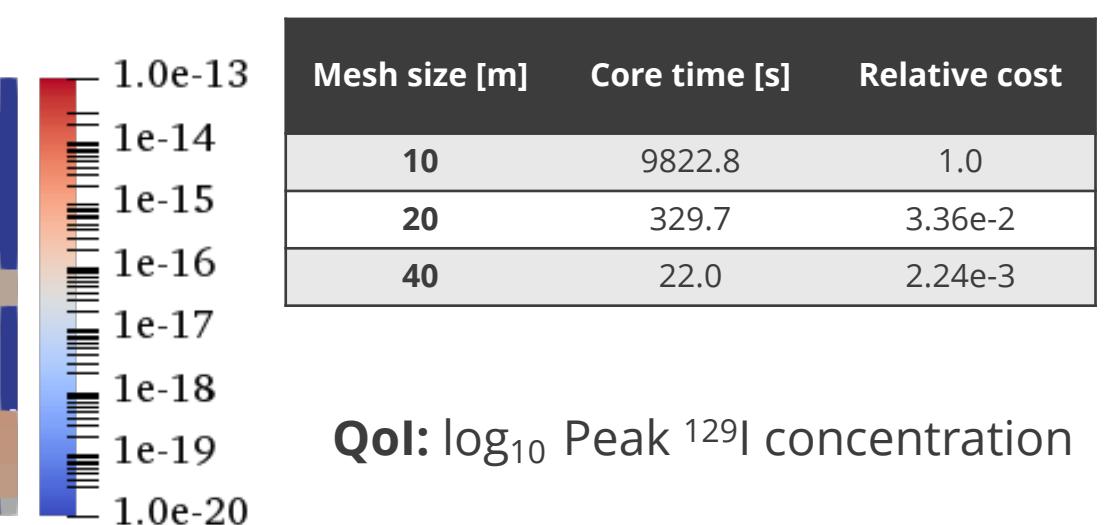


Image courtesy of [9]



Parameter	Description	Distribution
rateUNF	Waste form bulk dissolution rate [yr^{-1}]	$\log \mathcal{U}[10^{-8}, 10^{-6}]$
kGlacial	Glacial aquifer permeability [m^2]	$\log \mathcal{U}[10^{-15}, 10^{-13}]$
permDRZ	DRZ permeability [m^2]	$\log \mathcal{U}[10^{-19}, 10^{-16}]$
permBuffer	Buffer permeability [m^2]	$\log \mathcal{U}[10^{-20}, 10^{-17}]$
pBuffer	Buffer porosity	$\mathcal{U}[0.3, 0.5]$
wpBreachTime	Waste package breach time [yr]	$\mathcal{U}[2500, 10000]$



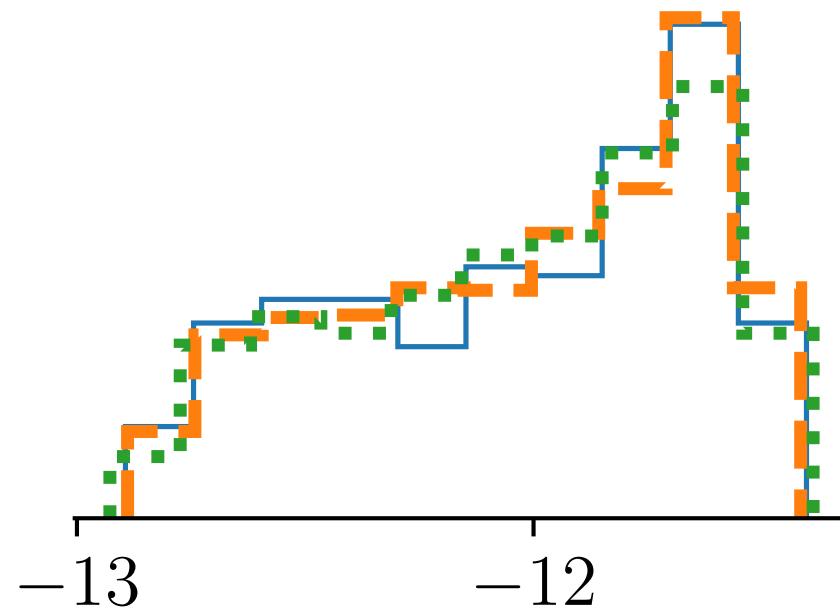
Multimodel methods projected to be almost 2 orders of magnitude more accurate for same cost

Method	Projected estimator variance	Projected MC variance Projected variance
Monte Carlo	1.78e-3	1.0
Multilevel	1.22e-4	15.7
Multifidelity	2.21e-5	80.6
ACV MF	2.85e-5	62.5

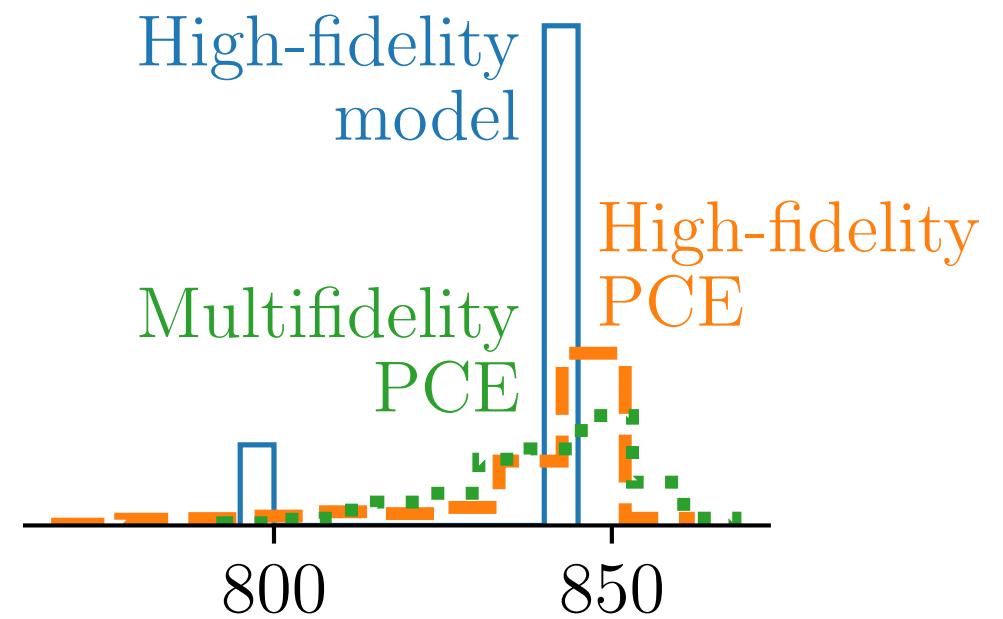
25 pilot samples, equivalent cost of 100 HF evaluations

Multifidelity polynomial chaos expansion (PCE) exhibits same challenges for discontinuous outputs as standard PCE

$\log_{10}(\text{Peak } {}^{129}\text{I Concentration in Aquifer}) [\text{M}]$



Peak ${}^{129}\text{I}$ x Location [m]



MF PCE was constructed at equivalent cost of ~ 22 high-fidelity model evaluations.

- Which method is best depends on model ensemble, goals of analysis
- Multimodel methods can significantly decrease the computational burden of uncertainty analyses (nominally by orders of magnitude)
- More information on pros and cons discussed methods in conference paper

Thanks!

References

1. Giles, Michael B. 2015. "Multilevel Monte Carlo Methods." *Acta Numerica* 24: 259–328. <https://doi.org/10.1017/S096249291500001X>.
2. Peherstorfer, Benjamin, Karen Willcox, and Max Gunzburger. 2016. "Optimal Model Management for Multifidelity Monte Carlo Estimation." *SIAM Journal on Scientific Computing* 38 (5): A3163–94. <https://doi.org/10.1137/15M1046472>.
3. Gorodetsky, Alex A., Gianluca Geraci, Michael S. Eldred, and John D. Jakeman. 2020. "A Generalized Approximate Control Variate Framework for Multifidelity Uncertainty Quantification." *Journal of Computational Physics* 408 (May): 109257. <https://doi.org/10.1016/j.jcp.2020.109257>.
4. Schaden, Daniel, and Elisabeth Ullmann. 2020. "On Multilevel Best Linear Unbiased Estimators." *SIAM/ASA Journal on Uncertainty Quantification* 8 (2): 601–35. <https://doi.org/10.1137/19M1263534>.
5. Kennedy, M. C., and A. O'Hagan. 2000. "Predicting the Output from a Complex Computer Code When Fast Approximations Are Available." *Biometrika* 87 (1): 1–13. <http://www.jstor.org/stable/2673557>.
6. Ng, Leo Wai-Tsun, and Michael Eldred. 2012. "Multifidelity Uncertainty Quantification Using Non-Intrusive Polynomial Chaos and Stochastic Collocation." In *53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Structures, Structural Dynamics, and Materials and Co-Located Conferences*. American Institute of Aeronautics and Astronautics. <https://doi.org/10.2514/6.2012-1852>.
7. Teckentrup, A. L., P. Jantsch, C. G. Webster, and M. Gunzburger. 2015. "A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data." *SIAM/ASA Journal on Uncertainty Quantification* 3 (1): 1046–74. <https://doi.org/10.1137/140969002>.
8. Jakeman, John D., Michael S. Eldred, Gianluca Geraci, and Alex Gorodetsky. 2020. "Adaptive Multi-Index Collocation for Uncertainty Quantification and Sensitivity Analysis." *International Journal for Numerical Methods in Engineering* 121 (6): 1314–43. <https://doi.org/10.1002/nme.6268>.
9. Gorodetsky, A. A., J. D. Jakeman, and G. Geraci. 2021. "MFNets: Data Efficient All-at-Once Learning of Multifidelity Surrogates as Directed Networks of Information Sources." *Computational Mechanics* 68 (4): 741–58. <https://doi.org/10.1007/s00466-021-02042-0>.