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Uncertainty Quantification (UQ) for geologic disposal safety
assessment (GDSA)

GDSA workflow at Sandia is deploying an
unprecedented level of model fidelity for UQ studies in
this application area.

~1.5 hours on 512 cores per simulation)
0(1000) model evaluations for current UQ studies
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Discretization
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s | There are two classes of multimodel methods

Multilevel Monte Carlo (MLMC) [1]

Multifidelity Monte Carlo (MFMC) [2]

Approximate Control Variates (ACV) [3]

Multilevel Best Linear Unbiased Estimate (MLBLUE) [4]

Multifidelity Gaussian Processes [5]
Multifidelity Polynomial Chaos Expansions [6]

Multilevel/multi-index stochastic collocation [7,8]
MFNets[9] |




s | There are two classes of multimodel methods

« Unbiased
« Performance independent of number of parameters, output smoothness
« Theoretical development has focused on functions of moments
- More work needed for efficient estimation of CDFs, tail probabilities, calibration

. J

___Surrogate-based .

« Build once, use for multiple UQ tasks (forward propagation, SA, calibration)

« Can exploit relationships that sampling-based can't (e.g. sparsity in discrepancy
between two models)

« Same weaknesses as their single-fidelity counterparts: e.g. GPs, PCEs can't handle |
100s of inputs, discontinuous model outputs.
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o I Sampling-based methods - beyond control variates

Mcy(0) = M(0) + a(M;(6) — E[M;]) Have to estimate this too

Multifidelity Monte Carlo [2]:

Myrme = M(0) + (1‘/4\1(9) — 1\71\1(91))
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0 | Best sampling-based method depends on model ensemble

V[M] (1 2 (1"1 - 1)) Cost(M)p?

V[M =— =
(Murmc| =5 ry " | Cost(M;)(1 — p?)

Each method combines models and samples differently.

Which one performs best is a nonintuitive function of model costs and correlations.

In practice model costs and correlations have to be estimated through a pilot study.

Dakota can project performance of each method so the user can select
the best one for their problem. Methods currently implemented:

° MLMC i ACV'MF
e MEMC « ACV-IS
« MLCV
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1 ‘ Surrogate-based methods @!
[Single-fidelity surrogate: M(Q) ~ f(@) }

Hierarchical surrogates Nonhierarchical surrogates
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rateUNF Waste forrrztglglli_?]issolution log U[108, 10-] ‘
kGlacial GIaciaIaqui[(:_;z?ermeability log U[10-15, 10~13]
permDRZ DRZ permeability [m?]  logU[1071°,1071€]
permBuffer Buffer permeability [m?]  logU[1072°,1077]
pBuffer Buffer porosity U[0.3,0.5]
wpBreachTime /25t paCka[flf]breaCh time  4/12500,10000]

E 1.0e-13 Mesh size [m] Core time [s] Relative cost
= le-14 10 9822.8 1.0 I
E 1e-15 20 329.7 3.36e-2
= le-16 40 22.0 2.24e-3 I
= le-17
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3 | Multimodel methods projected to be almost 2 orders of
magnitude more accurate for same cost

Projected estimator Projected MC variance

variance Projected variance
Monte Carlo 1.78e-3 1.0
Multilevel 1.22e-4 15.7
Multifidelity 2.21e-5 80.6 |
ACV MF 2.85e-5 62.5 I

25 pilot samples, equivalent cost of 100 HF evaluations



2 | Multifidelity polynomial chaos expansion (PCE) exhibits same m
challenges for discontinuous outputs as standard PCE
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MF PCE was constructed at equivalent cost of ~22 high-fidelity model evaluations.
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» Which method is best depends on model ensemble, goals of
analysis

* Multimodel methods can significantly decrease the

computational burden of uncertainty analyses (nominally by
orders of magnitude)

* More information on pros and cons discussed methods in
conference paper

o
!



Thanks!
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