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Background — Thermal Protection System Modeling

» Interest in modeling thermochemical response of ablative TPS materials
»Focus: Modeling of reacting pyrolysis gas in char layer; Surface
reactions with pyrolysis gas + atmospheric species

»Interests: thermal transport, gas-phase chemistry
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Modeling Ablator Energy Balance

» Pyrolysis gas enthalpy is critical .
. g . . oundary Layer
» Different composition -> Different thermal response Pyrglysis Gases Receding
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> Thermal Qols:
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Pyrolysis Gas Chemistry — Legacy Assumption

» In modeling of pyrolysis gas in ablation codes, two assumptions are common:
»Equilibrium Chemical Composition
»Uniform Elemental Composition
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Pyrolysis Gas Chemistry — Legacy Assumption

> Is this assumption accurate?
» Experimental results show large variation in Primary Pyrolysis elemental composition

»We will examine the kinetics of these species with a coupled simulation
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Analysis — Coupled Aria/Cantera Simulation

Material Response
Code (Aria)
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Aria Model Assumptions

TACOT Ablator Material
Equilibrium Chemistry
Constant Element Comp.
Legacy Pyrolysis Model

. Goldstein

Cantera Model
Assumptions
Neglect porous flow, GSI
effects
*  No coking
Neglect Transport
Pyrolysis Speciation
. Bessire-Minton
(6.1 C°/s) Data
Kinetics
. Blanquart Mech.
. 148 species, 1600+
reactions




Aria — Ablation Workshop Test Cases 2.2 & 2.3

» Aria — Galerkin finite element porous flow solver

»Part of Sandia’s SIERRA Multitool

»Used to run Lachaud’s 1D Ablation Test Cases using the TACOT Material:
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Aria Simulation Results
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» Resulting temperature and
recession profiles are nominal
to published PATO results of
Lachaud

» Results are then used to
run Cantera reactor network



Holistic Cantera Results — Gas Enthalpy over T & Time
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Case1-T =120 seconds
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Case1-T =120 seconds
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» The standard Damkohler
Number shows the onset of
chemical kinetics, but not
equilibrium

» The modified Da* shows
finite-rate/equilibrium transition
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Case1-T =120 seconds

» Strong variations in chemical composition seen, only approaching equilibrium
at very high temperatures; PAH peaks at around 5% mass fraction
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Case1-T =120 seconds

» Elemental composition is seen to stabilize at around 1400K, once primary
pyrolysis is mostly completed
> Molar Ratios: 18.2% carbon, 16.1% oxygen, 65.7% hydrogen
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Qdecom

1 —— TACOT

» Both cases are similar, so | — Fiie e
. 1 7 quilibriam
only Case 1 is shown here '

» As expected, equilibrium and
TACOT results behave
similarly

qorcoy (W/em?)

» Finite-rate results show
exothermic behavior for both _
reaction peaks o
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Upgpu
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Total Heat Transfer: Case 1 vs 2

Previous curves integrated over length vs simulation time.
»Typical surface aeroheating values: ~600 W/cm? (1), ~40 W/cm? (2)
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Conclusion

» Non-equilibrium pyrolysis gas

conditions in ablator is common Finite-Rate; 22-species reduced Blanquart mech.
<2500K | | | - el —
> Differences between Eq. and Finite- | e
rate gas cause substantial Rt
deviations in thermal Qols ol
> These Qols potentially have o, :
substantial impact on Ablator e e
Energy Balance A N
> See Lachaud et al -> . J J @ o 0 e

&‘ Source: Porous material analysis toolbox based on OpenFoam and applications. J. Lachaud, N. N. Mansour. Journal of 17
Thermophysics and Heat Transfer, 28 (2): 191-202, 2014
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Backup — Batch Reactor Tests

» Used to validate achievement of equilibrium with Blanquart mechanism & identify
relevant timescales for chemical kinetics

> Initial mixture: Gas composition taken from Minton 25 C/s experiment at various Ts

Al ¥ (a) 452.6°C. (b) 1068.5°C.

Figure 4-4. Normalized enthalpy of pyrolysis gases with respect to time. Species
correspond to Bessire and Minton data at 452.6°C and 1068.5°C

Figure 4-3. Normalized halpy of pyrolysis gases with respect to time. Species
correspond to Bessire and Minton data at 147.5°C.
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