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What this talk will cover

• What is peridynamics?
• What capabilities does it provide?
• Examples of analysis

• Bird strike
• Brittle dynamic fracture & fragmentation
• Composite material failure
• Pharmaceutical tablet manufacture

• Use with commercial codes
• Relation to machine learning & AI
• Some current research topics
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Peridynamics: What it is

• It is a theory of solid mechanics that allows for discontinuities within the basic equations.
• It also allows for long-range forces.

Metallic glass crack tip
Images: Hofmann et al, 2008

Peridynamic simulation
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Motivation: Fracture modeling

Image:  Lee, Choi,  Jung, & Im, 2009

Rigid tool

Element deletion

Image: Rege & Lemu, 2017

Remesh

Image: Zhang et al, 2019

Cohesive elements

Image: Qian & Zhao, 2017

XFEM

• The standard PDEs of solid mechanics are incompatible with fracture.
• So, people have created ingenious fixes implemented within a discretized model to model fracture…

• What would happen if instead we start with more general continuum equations that allow 
discontinuities?

• And then discretized these equations?
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Mechanistic picture of peridynamics

ℎ
𝐱 Bond force = 𝐟 𝐪, 𝐱 ℎ𝟑

𝐪

Bond

𝐱

𝐪

Horizon 𝛿

Family ℋ

𝐱

Body ℬ

• Each material point 𝐱 interacts with neighbors 𝐪 within a cutoff distance 𝛿 (the horizon).

• 𝐟 is the bond force density (N/m6).
• It doesn’t necessarily represent a 

physical force.
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Continuum equation of motion

𝐱

𝐪

Bond

𝐟(𝐪, 𝐱)
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Material modeling

• The material model determines 𝐟(𝐪, 𝐱) for every 𝐪 in ℋ, for every possible deformation of ℋ.
• Requirement for balance of linear momentum:

𝐟(𝐱, 𝐪) = −𝐟(𝐪, 𝐱)

𝐱

𝐪

Bond

𝐟(𝐪, 𝐱)

𝐱

Bond

𝐟(𝐪, 𝐱)

𝐟(𝐱, 𝐪)
𝐪

𝐪

𝐟 𝐪, 𝐱

Bond forces
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Material modeling: Bond-based vs. state-based

• In a bond-based material, the force density in a bond depends only on the deformation of that 
particular bond.

• Highly restrictive (Poisson’s ratio = 1/4 in 3D).
• The alternative assumption is used in state-based material models.

• Much more general.
• Any Poisson ratio.

An elastic bond-based material is a network of springs
(which can be nonlinear)

𝐱

𝐪

𝐱

𝐟(𝐪, 𝐱)

𝐟(𝐱, 𝐪)
𝐪

Bond force 
density 𝑓

Bond strain 𝑠

Slope 𝑐
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Finding a stress tensor from a peridynamic model

• The stress tensor does not play a fundamental role in peridynamics.

• But sometimes we want to know it.

• Approximate expression (partial stress tensor):

• Units are force/area. 

• SS, D. Littlewood, and P. Seleson, 2015. Variable horizon in a peridynamic medium. Journal of Mechanics of Materials and 
Structures, 10(5), pp.591-612.

• S. Li, 2021. Peridynamic stress is a weighted static virial stress. arXiv:2103.00489.
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Damage: Bond breakage

• Bonds can break irreversibly.

• After breakage, a bond cannot carry any tensile load.

• The criterion for bond breakage can be anything you can 

dream up.

• The simplest criterion is critical bond strain.

• Relation of the critical bond strain to the energy release rate 

in linear bond-based material:

Bond force density 
|𝑓 𝑞, 𝑥 |

Bond strain 𝑠
𝑠0
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Generality of material models

• Any material model from the local theory can be implemented in state-based peridynamics.
• Also, nonlocality allows material response not possible within the standard continuum PDEs.

• Example: peridynamic plates and shells*.

𝐱

𝐪𝐪′

𝜽

𝐟(𝐪, 𝐱)

𝐟(𝐱, 𝐪)

*J. O’Grady and J. Foster, 2014. Peridynamic plates and flat shells: A non-ordinary, state-based model. International 
Journal of Solids and Structures, 51(25-26), pp.4572-4579.

Material model for plates resists angle changes between opposite bonds



12

Generality of damage models

• Almost any criterion can be used for bond breakage.
• Some damage models that have been implemented:

• Hashin (composites)
• Drucker-Prager (granular)
• Tearing parameter (ductile metals)
• Johnson-Holmquist-Beissel (ceramics)
• Nonlocal continuum damage mechanics
• Fatigue
• M7 Microplane (concrete)*
• Nonlocal Rice-Eshelby J-integral**

*Y. Bazilevs, M. Behzadinasab, and J.T. Foster, 2022. Journal of the Mechanics and Physics of Solids, p.104947.
** W. Hu, Y.D. Ha, F. Bobaru, and SS, 2012.  International journal of fracture, 176(2), pp.195-206.

ℬ
𝒫 𝜕𝒫

Crack growth
𝐧𝐱

𝐱′

Nonlocal J-integral
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Simple particle discretization

▪ Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

• Discontinuous Galerkin is another viable method (used in LS-DYNA). 

▪ Good:
▪ Simple.
▪ Linear and angular momentum conserved exactly.

▪ Bad:
▪ Not always asymptotically convergent to the right PDE.
▪ Fails patch test for irregular grids.

• SS & Askari, Computers and Structures (2005)
• Bobaru, Yang, Alves, SS, Askari, & Xu, IJNME (2009)
• Chen & Gunzburger, CMAME (2011)
• Du, Tian, & Zhao, SIAM J Numerical Analysis (2013)
• Tian & Du, SIAM J Numerical Analysis. (2014)
• Ganzenmüller, Hiermaier, May, in Meshfree methods for partial differential equations VII, Springer (2015)
• Seleson & Littlewood, Computers & Mathematics with Applications (2016)
• Du, in Handbook of peridynamic modeling (2016)
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Short-range forces

• These are used for contact between bodies, self-contact, and sometimes for post-failure response 
within bodies.

• They only depend on the current (not initial) distance between material points.

𝐲(𝐱, 𝑡)

𝐲(𝐪, 𝑡)

Points repel each other even if they started far apart
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We get geometric nonlinearity for free: Bird strike

Typical test
(credit: Arthur Core) Peridynamic model

• Bonds can rotate.
• Force vectors rotate with the bonds.
• This holds even if the material model has a linear 

dependence on strain.

VIDEO

VIDEO
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Autonomous crack growth

• Bonds break whenever they feel like it.

• When a bond breaks, it becomes more likely that a neighboring bond will also break. 

Broken bond

Crack path
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Typical crack growth application

Colors show net damage
Displacements x100

VIDEO
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Weak and strong interfaces

• Initial crack grows and encounters a hard inclusion.

Weak interface Strong interface

VIDEOS
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Validation of crack speed in glass

• Fracture in soda-lime glass using 3 different grid spacings*.

• Ha & Bobaru, Int J Fracture (2010)
• *Agwai, Guven, & Madenci, Int J Fracture (2011)
• Ha & Bobaru, Engin Fracture Mech (2011)
• Dipasquale, Zaccariotto, & Galvanetto, Int J Fracture (2014)
• Bobaru & Zhang, Int. J Fracture (2015)
• Zhou, Wang, & Qian, European J Mechanics-A/Solids. (2016)
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Mixed mode fracture

• Crack growth direction changes continuously with load direction.

Colors show net damage
Displacements x100
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Crack stability and mode transition

• Biaxial loading causes a crack to turn.
• Center defect can grow in an S-shape.
• Biaxiality: 𝐵 = 𝜎𝑥/𝜎𝑦.

*Leevers, Radon, & Culver JMPS (1976)

𝜎𝑥

𝜎𝑦

𝐵 = 2.1𝐵 = 2.8

Observed crack paths in PMMA*

𝐵 = 2.0

𝐵 = 2.5

𝐵 = 0

Simulated crack paths
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Crack stability: Mirror-mist-hackle transition

• Model predicts microbranches that increase in size as the crack grows.
• Transition radius decreases as initial stress increases – trend agrees with experiments. 

Fracture surface in a glass optical fiber3D peridynamic model
Colors show axial coordinate of damaged nodes. Image: Castilone, Glaesemann & Hanson, Proc. SPIE (2002)

Defect

Glass rod
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Fragmentation due to impact

• Brittle cylinder vs. rigid plate at 1km/s.

Colors show damage
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Anisotropy: Composite lamina

• Bonds in different directions can have different elastic response (𝑐) and critical strain (𝑠0).

Node

Matrix bond

Fiber bond

Fiber direction

Bond force density 
|𝑓 𝑞, 𝑥 |

Bond strain 𝑠
𝑠0

Matrix bond

Fiber bond
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Anisotropy: laminate

• Stack up laminas, connected by a third type of bond (interlayer).

0 deg

45 deg

90 deg

-45 deg

0 + 90deg fabric

Interlayer bond

Fiber bond

Resin bond
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Effect of composite layup on failure modes

• Large notch tension test.

• Relative numbers of plies in different directions influences the failure mode.

• Harder layups (lots of fibers in the loading direction) often do not fail with a crack straight across 
the specimen.

100/0/025/50/25 30/60/10 40/50/10

Image: Boeing

Peridynamic simulations of LNT failure modes
Colors show axial displacement in top ply
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Impact on composites: Analysis in predictive mode

F. Cuenca et al., “Determination of ballistic limit for IM7/8552 using peridynamics.” In 2018 AIAA/ASCE/AHS/ASC Structures, 
Structural Dynamics, and Materials Conference (p. 1703). 

• Deformable projectiles vs. 40 to 56 ply carbon-epoxy laminate (NASA Glenn).
• Try to find V50 (just barely perforate).
• Analysis results were blind predictions – didn’t know test data.

Simulation
Color show displacementTarget fixture

800

400

0

V
5

0
 (

ft
/s

)

Blue = model, Brown = experiment

Model vs. experiment 
for different combinations of projectile shape 

and composite thickness
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Special damage criteria: Drucker-Prager*

Materials

Start of damage Final damage

Solid density at 
peak compression

Ejection of a pharmaceutical tablet from a rotary press

Pressure

Von Mises stress

Failure surface

*Joint work with S. Garner, W. Ketterhagen & J. Strong (AbbVie Corp.)

Tablet “capping” failure

Image: merlin-pc.com
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Nonlocality

• All discretized methods are nonlocal.

• Long-range forces are nonlocal (e.g. Van der Waals).

• Heterogeneous materials are nonlocal after homogenization.

• Nonlocality can reproduce wave dispersion.

Van der Waals material
F. Bobaru, Modelling and Simulation in Materials Science 
and Engineering 15, no. 5 (2007): 397.*Tauchert, Theodore R., and A. N. Guzelsu. "An experimental study of dispersion of stress 

waves in a fiber-reinforced composite.“ J. Applied Mechanics (1972): 98-102.

Data*

Peridynamic
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Some practical challenges

• Boundary conditions with integral equations generally require specifying displacement or external load 
within a volume, not just on a surface.

• Lots of fixes for this in the literature.
• Surface effect.

• Points near a free surface have more compliant elastic properties than in the interior.
• Many practical fixes available.

𝑞 + 𝑢(𝑞)

𝜉
𝛿

Contours of 𝑐 which is now 
position-dependent

𝑞 + 𝑢(𝑞)

𝜉
𝛿

Point in the interior Point near a free surface 
is missing some bonds
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Peridynamics with commercial codes: Abaqus

• Peridynamic bond interactions can be included in an Abaqus model as a User Element Library (UEL).

• X.Huang, et al, 2019, Engineering Fracture Mechanics, 206, pp.408-426.
• Y. H. Bie, et al, 2020, Computer methods in applied mechanics and engineering, 372, p.113398.
• U. Yolum, A. Taştan, and M. A. Güler,  2016. Procedia Structural Integrity, 2, pp.3713-3720.
• R. Beckmann, R. Mella, and M. R. Wenman, 2013. Computer methods in applied mechanics and engineering, 263, pp.71-80.
• T. A. Haynes, D. Shepherd, and M. R. Wenman, 2020. Journal of Nuclear Materials, 540, p.152369.
• R. W. Macek, and S, 2007. Finite elements in analysis and design, 43(15), pp.1169-1178.

Angled crack growth simulation with PD in Abaqus (image: Huang et al., 2019)
Truss elements (image: Beckmann et al., 2013)
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Peridynamics in commercial codes: LS-Dyna

• Peridynamics was implemented as a user option in LS-Dyna using the Discontinuous Galerkin method.

• B. Ren, C. T. Wu, and E. Askari, 2017. International Journal of Impact Engineering, 99, pp.14-25.
• B. Ren and C. T. Wu, “New Features in LS-Dyna,” FEA publications, 2017.
• S. Das et al., 2017, Journal of Engineering Mechanics  145(7), p.04019049.
• P. Seleson, B. Ren, C. T. Wu, D. Zeng, and M. Pasetto, M., 2022. ORNL/TM-2022/1826

LS-Dyna simulation of a composite laminate (image: Seleson et al. 2022)
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Peridynamics with commercial codes: ANSYS

• Peridynamics was coupled with Standard ANSYS using MATRIX27 elements and the 
Peridynamic Differential Operator.

• E. Madenci, P. Roy, and D. Behera, 2022. Coupling of Bond-Based Peridynamics with Finite Elements in ANSYS. In Advances in 
Peridynamics (pp. 351-398).

• C. Diyaroglu, E. Madenci, and N. Phan, 2019. Composite Structures, 227, p.111334.

Standard ANSYS model of a notched orthotropic plate (images: Diyaraglu et al., 2019)
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PD and machine learning: Training a neural network

• Peridynamic simulations can be used to train a neural network to predict fracture.

• M. Kim, N. Winovich, G. Lin, and W. Jeong, 2019. Journal of Peridynamics and Nonlocal Modeling, 1(2), pp.131-142.

Peridynamics Peri-net NN

Images: Kim et al., 2019
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PD and machine learning: Learning a PD material 
model from molecular dynamics

• Upscale MD to find a peridynamic material model.

• H. You, Y. Yu, Y., S.S. and M. D’Elia, 2022. Computer Methods in Applied Mechanics and Engineering, 389, p.114400.
• X. Xu, M. D’Elia, and J. T. Foster, 2021. Computer Methods in Applied Mechanics and Engineering, 386, p.114062.
• C.T. Nguyen, S. Oterkus, and E. Oterkus, 2021.  In Peridynamic Modeling, Numerical Techniques, and Applications (pp. 419-435). 

MD simulations of graphene under external loading 𝐛(𝐱). 
Colors show displacement.

Learned peridynamic kernel

ML

Images: You et al., 2022.
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Discovering a PDE vs. learning a kernel

• People try to discover new PDEs from data.
• Sometimes a new peridynamic kernel acts like a new PDE.

• Example: Solitary waves.
• It may be possible to discover the Korteweg–De Vries (KdV) equation.

• But there is a peridynamic material model that generates similar solutions:

Nonlinear peridynamic material model predicts solitary waves.

Bond strain

Bond force

• S.S., 2016. Journal of the Mechanics and Physics of Solids, 96, pp.121-132.
• R. L. Pego and T.S. Van, 2019.  Journal of Elasticity, 136(2), pp.207-236.
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Summary

• Peridynamics is a continuum theory that allows for cracks within the basic equations.
• Any material model and damage criterion can be included.
• It lends itself to a straightforward meshless discretization.
• It is gradually being incorporated into commercial codes.
• It may offer opportunities in AI.

Sandia’s open source peridynamic code: Peridigm
peridigm.sandia.gov

Thank you!
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Conclusion: Some research areas in peridynamics

▪ Local-nonlocal coupling.

▪ Multiphysical modeling & nonlocal diffusion chemistry, and heat transport.

▪ Implicit solvers.

▪ Relation to AI & ML.

▪ Nonlocal & nonlinear wave motion.

▪ Post-failure material modeling.

▪ Ductile failure.

▪ Better meshless discretizations including RKPM.

▪ Integration into FEM tools.

▪ Isogeometric analysis.

▪ Boundary condition implementation.

▪ Nanoscale material modeling, self-assembly, self-shaping of structures.

▪ Material stability.

▪ Phase transitions.
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Microballistic perforation of multilayer graphene

5.7 ns 11.4 ns

17.1 ns 60.0 ns

85mm

500mm

Laser

Projectile (D = 3.7mm)

Graphene specimen (0.01-0.1mm)

Launch 
velocity

Polymer

Microballistic experiment*

*J-H Lee et al, Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration, Science (2014)
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Microballistic perforation of multilayer graphene

• J-H Lee et al, “Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration”, Science (2014)
• SS & M Fermen-Coker, “Peridynamic model for microballistic perforation of multilayer graphene.” Theoretical and Applied Fracture Mechanics. 

2021 Jun 1;113:102947.
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600m/s 3.7mm sphere onto 50nm thick graphene laminate.
VIDEO
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Blunt projectile vs. steel plate

31𝜇𝑠

0𝜇𝑠 13𝜇𝑠

Initial
V = 169m/s
(no perforation) V = 241m/s

• 30mm diameter 4340 steel cylinder onto 10.5mm thick HY-100 steel plate.
• Failure mode is plugging.
• Both materials use Johnson-Cook plasticity.

V = 246 m/s
Experiment

• Forrestal & Hanchak, Int. J. Impact Eng. (1999)
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Blunt projectile vs. steel plate,ctd.

31𝜇𝑠

• Forrestal & Hanchak, Int. J. Impact Eng. (1999)
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Impact and erosion

• 1mm glass sphere into C-C composite, 4000m/s.
• Mie-Gruneisen EOS and critical bond strain damage model.

Composite weave Colors show damage
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Local operator can be represented as nonlocal operator

• * E. Madenci, A. Barut, and M. Futch, 2016. Peridynamic differential operator and its applications. Computer Methods in Applied 
Mechanics and Engineering, 304, pp.408-451..

• ** X. Kan, J. Yan,  S. Li, and A. Zhang, 2021. On differences and comparisons of peridynamic differential operators and nonlocal 
differential operators. Computational Mechanics, 68(6), pp.1349-1367.

• Sort of a converse to the previous result:
• We can approximate partial derivatives by peridynamic-type integrals that are then discretized.

• Peridynamic differential operator*.
• Example: Laplacian: Horizon 𝛿

𝐱
𝛏

where the 𝑔𝑘𝑖are weights that can vary with position.
• Related to RKPM & other ideas, see ** for discussion. 

∇2𝑢 ≈ න
ℋ𝑥

𝑤(𝛏) 𝑢 𝐱 + 𝛏 − 𝑢 𝐱 𝛏 2𝑑𝛏 ≈෍

𝒌

𝑔𝒌𝒊 𝑢 𝐱𝒌 − 𝑢 𝐱𝒊
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Precracks

• How to create a pre-existing crack?
• Cut all the bonds across the surface where you want the crack.

Precrack Growing crack

Colors show net damage
Displacements x100

𝑥

Unbroken bondsPrecrack
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What does a crack tip strain field look like?

Bonds break as a crack approaches Strain approached LEFM solution away 
from a crack tip
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Weak and strong interfaces

• Bonds from one material to another can be stronger or weaker than internal bonds.

Weak interface Strong interface
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Accumulation of damage: Hammering on a block

Penetration depth vs. time
Each peak is a strike.
Break through at 24 strikes.

Colors show damage

VIDEO



49

Special damage criteria: Fatigue

• Test data: T. Zhao, J. Zhang, and Y. Jiang. A study of fatigue crack growth of 7075-T651 aluminum alloy. International Journal of 
Fatigue, 30 (2008) 1169-1180.

• G. Zhang, et al., 2016. Validation of a peridynamic model for fatigue cracking. Engineering Fracture Mechanics, 162, pp.76-94.

• Bond breakage criterion depends on cyclic loading in the bond 
and number of loading cycles.

𝐱

𝐱 + 𝛏

Bond strain 𝑠

Time

C
yc

lic
 b

o
n

d
 

st
ra

in

Simulation of fatigue in an aluminum coupon
Colors show displacement (x100)
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Peridynamics approaches classical theory as 𝜹 → 𝟎

Horizon 𝛿

𝐱

R.B. Lehoucq and SS, 2008. Force flux and the peridynamic stress tensor. Journal of the Mechanics and Physics of Solids, 
56(4), pp.1566-1577.

𝐪

𝐟 𝐪, 𝐱

Bond forces have no required smoothness.
Big mess.
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Some good and bad features of peridynamics
based on experience

• Good
• Autonomous crack growth.
• Simple meshless discretization and treatment of contact.
• Allows long-range nanoscale forces. 

• Nonlocality provides opportunities in material modeling.
• Post-failure meshless nodes act like classical particles.
• Seems to interface well with AI & ML.
• Can easily adapt material & damage models from the local theory.

• Bad
• “Feels different” to users than traditional analysis methods (exception: LS-Dyna).

• Boundary conditions are weird.
• Need to adjust material properties from point to point.

• Generally slower than FEM due to nonlocality.
• Sometimes need a finer discretization than one would like to use.


