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/ Constitutive model calibration can require fewer tests when using full-field
‘4 data, but current inverse methods for such calibration have several
7/ drawbacks

Experimental Data Requirements Example Inverse Methods

Finite Element Method Updating (FEMU):

Simple Tests

Issues:
Expensive and
slow
Hard to map
surface data to
3 FEM mesh
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/" Physics informed neura

networks (PINNs) - elementary example

[ Burger’s Equation

ur +uuy — (0.01/m)uyy =0, xe[—1,1],

u(0, x) = —sin(rx),

u(t,—1)=u(,1)=0.

t [0, 1],

Residual

fri=ur +uuy — (0.01/7 ))uxx

NN loss function

MSE =MSE, +MSEy.

1
_ i iy 02
MSEH_N—H‘Ellu(tu,xu) u'|
1=

Ny
1 o
n/;*SEf:N—fZIJF(I},X})I2
i=1

The “training data” here is the initial and boundary
conditions at collocation points

Other points away from the boundaries are used to
calculate the residual

u(t, x)

t=10.75
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Raissi et. al 2019 Journal of Computational Physics‘




// Deep Energy Method for

Finite-Strain Hyperelasticity
Nguyen-Thanh et. al., Euro. J. Mechanics A, 2020
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/ PINNs for solid mechanics - A few examples for the literature

PINNs + Deep Energy Method to Resolve Stress
Concentrations in Finite-Strain Hyperelasticity
Fuhg and Bouklas] Comp Phys., 2022
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PINNs for Inverse Method for 2D Problems
Hagh|ghat et. al., CMAME 2021
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/ Our PINNs Approach - Theoretical Basis

Principle of Stationary Potential Energy

= / ¢ (E) dv — / b-udv — / t - uda. ue%llil(lgo)n(u) Basis for Deep Energy Method (DEM)
Bo By aB¢

Principle of Virtual Work

5H:/ 51/)(E)dfu—/ b-5udv—/ t-ouda =0
Bo Bo OB

In the course of our work we found issues with both of these descriptions in the realm of PINNs

The principle of stationary potential energy was robust, but would leave internal forces out of balance

The principle of virtual work had slower convergence but balanced forces to reasonable tolerances

We therefore sought a balance between these (A weak form version of gradient enhanced PINNS)




// Our PINNs approach to material model calibration utilizes
heterogenous full-field data and global force data.

/ Kinematics / Displacement BC / Neural network Standard shape
functions for Hex8
uy (X, 1) ~u(X,t)+ f(X) N (X, 1) Nnodes /elements
Vxuly, = Z ujI\f QR Vx N!
Fi =1+ Vxuly, =1
Total potential energy for time step n Internal Force Vector
N Nq 8HN
=3 3wy (det 39 v () =0y =5an
e=1 qg=1

Total loss function L=pL, +7Ly+ 0Ly

Loss function for potential energy L, =1y + « ||5HN ||§CT€€
For inverse problems we have the additional error terms for experimental data
Surface Displacement Error ! N, Global Force Error
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Schematic of PINN architecture
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Training Details

3 hidden layer feed forward neural network with 50 neurons per hidden layer
 Hyperbolic tangent activation functions

« Adam optimizer with a learning rate of 0.001

« Exponential decay learning rate scheduler

« Xavier initialization used for NN weights and biases

« Material parameters are initialized randomly between a lower and upper bound
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/ As a validation exercise, our PINNs architecture used in the forward
problem reasonably approximates displacements and global forces for

several hyperelastic models in large deformation BVPs.

Forward problem code-to-code V&V using
Neo-Hookean constitutive model
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Forward problem code-to-code V&V using
Gent constitutive model
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Forward problem example - Neohookean

Displacement components at 50% global strain

FEM
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Forward problem example - Gent

Displacement components at 75% global strain

N
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/  experimental specimen
and run FEA

0.50
.45
0.3
0.25
I nz
015

0.1
0.05
0.00

0.16

0.1 1
0.12 1

=

o 0.08 4
o

nl [rm]

0.02

X Displaceme

training loop

Feed data
into PINN

— 0.10
z

g
£ 0.06 |
0.04

0.00 4

= FEM
—— PINN

0.0

0.1

0.2

Displacement [mm

0.3

0.4

0.5

/" Synthetic data inverse problem workflow
,/ Mesh geometry of

Neural Network Boundary Kinematics Material  Energy Internal
w B : Conditions Maodel Force

O@

Internal Foree

@ and
Loss Displacement Energy | Global Force

Backpropagate ,/1.,\\ Data Error Error

constitutive model
parameters
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Here, the surface displacement data aligns exactly with
the computational mesh used to calculate integrals in

the PINN loss function ‘

\ Output optimized




Inverse problem example - Neohookean

8 separate PINNSs are trained to show repeatability
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/7 Inverse problem example - Gent

g 8 separate PINNSs are trained to show repeatability
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,/ Mesh geometry of
/  experimental specimen
and run FEA
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Inverse problem example - Neohookean with data dropout
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/" Inverse problem example - Neohookean with data dropout
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Bulk Modulus

// Inverse problem example - Neohooken with contiguous data
dropout

Shear Modulus
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P Conclusion

An approach for calibrating constitutive models with full-field data using PINNs was
developed

2. This approach was shown to be able to successfully calibrate Hyperelastic constitutive
models

3. With this approach, we relaxed the difficulty of interpolating DIC data onto a FEM mesh
4. Although initially successful, the following needs to be addressed

a) Improved training

b) Incorporation of multiple experimental test specimens into the training process

c) Extension to material models with history dependence

d) Incorporation of inertial affects for leveraging dynamic experimental tests
e) Contact




