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Constitutive model calibration can require fewer tests when using full-field 
data, but current inverse methods for such calibration have several 
drawbacks
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Experimental Data Requirements Example Inverse Methods

Simple Tests

Complex Heterogeneous Tests

Finite Element Method Updating (FEMU):

Virtual Fields Method (VFM):

Tension Notched 
Tension

Compression
Kramer, et. al., IJF, 2019 Robert, et. al., 

J. Strain Anal. Engr. Design, 2012

Jones, et. al., Sandia Report SAND2018-10635, 2018Impact with Round Indenter Tension of “D” Shaped Sheet

Issues:
• Expensive and 

slow
• Hard to map 

surface data to 
FEM mesh

• Hard to use more 
than one 
experiment

• (VFM) Need 
volumetric strain 
data or plane-
stress / sheet-
material only 
limitation



Physics informed neural networks (PINNs) – elementary example
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Burger’s Equation

Residual

The “training data” here is the initial and boundary 
conditions at collocation points

Other points away from the boundaries are used to 
calculate the residual

NN loss function

Raissi et. al 2019 Journal of Computational Physics



PINNs for solid mechanics – A few examples for the literature
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Deep Energy Method for
Finite-Strain Hyperelasticity

Nguyen-Thanh et. al., Euro. J. Mechanics A, 2020

PINNs + Deep Energy Method to Resolve Stress 
Concentrations in Finite-Strain Hyperelasticity

Fuhg and Bouklas, J. Comp. Phys., 2022

Beam with Deflection

Forward-Only Approach:
Ux Field

Forward-Only Approach:
Ux Field for Twisted 

Cuboid

PINNs for Inverse Method for 2D Problems
Haghighat et. al., CMAME 2021

Separate PINN for 
each component of 

2D stress and 
displacement

PINNs for Geometry Defect and Material Property 
Identification

Zhang et. al. Science, 2022

Shape estimation of PINN (red) vs. FEM (blue) for a hyperelastic 
material with increasing level of PINNs training



Our PINNs Approach – Theoretical Basis
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Principle of Stationary Potential Energy

Basis for Deep Energy Method (DEM)

Principle of Virtual Work

In the course of our work we found issues with both of these descriptions in the realm of PINNs

The principle of stationary potential energy was robust, but would leave internal forces out of balance

The principle of virtual work had slower convergence but balanced forces to reasonable tolerances

We therefore sought a balance between these (A weak form version of gradient enhanced PINNs)



Our PINNs approach to material model calibration utilizes 
heterogenous full-field data and global force data.
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Kinematics Standard shape 
functions for Hex8 

elements

Neural networkDisplacement BC

Total potential energy for time step n

Loss function for potential energy

For inverse problems we have the additional error terms for experimental data
Surface Displacement Error Global Force Error

Total loss function

Internal Force Vector



Schematic of PINN architecture
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Training Details
• 3 hidden layer feed forward neural network with 50 neurons per hidden layer
• Hyperbolic tangent activation functions
• Adam optimizer with a learning rate of 0.001
• Exponential decay learning rate scheduler
• Xavier initialization used for NN weights and biases
• Material parameters are initialized randomly between a lower and upper bound



As a validation exercise, our PINNs architecture used in the forward 
problem reasonably approximates displacements and global forces for 
several hyperelastic models in large deformation BVPs.
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Forward problem code-to-code V&V using 
Gent constitutive model

Forward problem code-to-code V&V using 
Neo-Hookean constitutive model

Global force Global force



Forward problem example - Neohookean
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Displacement components at 50% global strain

FEM

PINN



Forward problem example - Gent
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Displacement components at 75% global strain

FEM

PINN



Synthetic data inverse problem workflow
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Mesh geometry of 
experimental specimen 

and run FEA

Feed data 
into PINN 

training loop
Output optimized 
constitutive model 

parameters

Here, the surface displacement data aligns exactly with 
the computational mesh used to calculate integrals in 

the PINN loss function



Inverse problem example - Neohookean
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Here the computational 
mesh nodes and surface 
displacement data point 

locations line up

8 separate PINNs are trained to show repeatability



Inverse problem example - Gent
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Here the computational 
mesh nodes and surface 
displacement data point 

locations line up

8 separate PINNs are trained to show repeatability



Inverse problem example – Neohookean with data dropout
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Mesh geometry of 
experimental specimen 

and run FEA

Feed data 
into PINN 

training loop

Use a coarse 
mesh for 
calculating 
integrals

Output optimized 
constitutive model 

parameters

Here, the surface displacement data 
do not align with the computational 
mesh used to calculate integrals in 

the PINN loss function



Inverse problem example – Neohookean with data dropout
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Here the computational 
mesh nodes and surface 
displacement data point 
locations do not line up

Bulk Modulus Shear Modulus

Data points are randomly dropped to 
mimic uncorrelated DIC data



Inverse problem example – Neohooken with contiguous data 
dropout
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Remove large contiguous regions of 
synthetic DIC data to mimic a poor 

speckle pattern, region out of focus, or 
other experimental defects/artifacts

Bulk Modulus Shear Modulus
50%

75% 87.5%



Conclusion
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1. An approach for calibrating constitutive models with full-field data using PINNs was 
developed

2. This approach was shown to be able to successfully calibrate Hyperelastic constitutive 
models

3. With this approach, we relaxed the difficulty of interpolating DIC data onto a FEM mesh
4. Although initially successful, the following needs to be addressed

a) Improved training
b) Incorporation of multiple experimental test specimens into the training process
c) Extension to material models with history dependence
d) Incorporation of inertial affects for leveraging dynamic experimental tests
e) Contact


