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Emerging infectious disease pose an imminent threat to human
» | health, economic and national security

“Pandemics are for the most part disease outbreaks that become widespread as a
result of the spread of human-to-human infection. Beyond the debilitating, sometimes
fatal, consequences for those directly affected, pandemics have a range of negative
social, economic and political consequences. These tend to be greater where the
pandemic is a novel pathogen, has a high mortality and/or hospitalization rate and is
easily spread. According to Lee Jong-wook, former Director-General of the World
Health Organization (WHO), pandemics do not respect international borders.
Therefore, they have the potential to weaken many societies, political systems
and economies simultaneously.”

United Nations Chronical, 2008 (https://www.un.org/en/chronicle/article/national-security-and-pandemics)
1918: Influenza

- The current Covid-19 pandemic highlights the devastating potential of new
2002: West Nile Virus - and emerging infectious diseases.

2003: SARS

2005: Bird flu . _ .
2009: Swine flu And the need to develop methods to predict the pandemic potential of
2014: Ebola emerging pathogens.

2016: Zika virus
2019 - : Covid 19




We are trying to understand and predict viral evolution

Evolution occurs along a genotype/phenotype — fithess landscape
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Cell Host Microbe 2018, 23 (4), 435-446.

Simple 5 mutation site, 2 possible mutations network

» 25(32) genotype combinations

* Connected by single mutations

* Prob{mutation} ~ line width

* Network complexity ~ Interactions among
mutations (epistasis)

Populations explore the topography of the fithess landscape

* By acquiring mutations

* Natural selection drives populations toward local maxima

« Swarms of variants simultaneously exploring the fitness
landscape

We are essentially trying to identify (predict) the local maxima on the fitness landscape



Sequence Position

‘ Why is it so challenging?

Sequence alignment of 10,570 SARS-CoV2-S-RBD variants identified in Asia

Mutation Counts in SARS-CoV2 S-RBD
Variants ldentified in Asia
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Consensus sequence generated from alignment of the
10,570 variants identified in Asia

« Conservation does reduce the search space or space of possible variants.
« Space of variants is still huge ~ 20", where n is the number of possible mutation sites.
« Highly fit variants are very rare and predicting the pathway along the fitness landscape difficult.
* Fitness landscape is very high dimension with multiple objective functions.



5 I Using Published Data

Starr, Tyler N., et al. "Deep mutational scanning of SARS-CoV-2 receptor binding
domain reveals constraints on folding and ACEZ2 binding." Cell 182.5 (2020): 1295-1310.

» Receptor binding domain (RBD) expression on cell surface of yeast
« RBD consists of spike amino acids 331-531 (201 total)

 PCR-based mutagenesis introduces mutations
Binding
* Titration curves for 16 ACE2 concentrations
 Binding Endpoint: Change in log10(Ka) from wildtype (Ka is inverse dissociation constant)

Expression
* Fluorescence-activated cell sorting
» Expression Endpoint: Change in mean fluorescence intensity from wildtype

Global epistasis models predict effects on expression/binding for single mutations



Using Published Data Cont'd

Greaney,Allison |., et al. "Comprehensive mapping of mutations in the SARS-CoV-2 receptor-
binding domain that affect recognition by polyclonal human plasma antibodies.” Cell host &
microbe 29.3 (2021):463-476.

* Similar experiment to before

* |0 neutralizing antibodies
* 9 from SARS-CoV-2 patients, | from SARS-CoV-I

* Also used to build global epistasis models

Endpoint: log | O(Escape Fraction)
n.ﬁost/ngre

NPost NpTe

* Escape Fraction E,, = F *

* Fis total fraction of library that escapes antibody binding

e y . . . -
« nb" nD™" are the counts for variant v before and after enriching for antibody escape plus a pseudo-count .5

. Np;-g — Zni;t-e‘Npm;r _ Z n[:o:rt.



7 I Variants in Data

Binding Pl Ee Lo
* 146,437 observations of 105,526 unique variants 2 g
* 0-10 mutations per variant with median 3 o] :
- 3,802 unique mutations represented (out of 19*201 = 3,819 i T i
possible) Sl =41 i
* No deletions/insertions N
Expression =g 1 1 |+ -
« 177,759 observations of 135,386 unique variants i 10 N T N R
« 0-12 mutations per variant with median 3 ] e e
* 4,002 unique mutations represented (of 4,020 possible) g A0 T L
« Deletions included, but no insertions + + T T * _ + _ +
Antibody Escape R
« 714,797 observations of 50,795 unique variants - l R
* 10 antibodies with 66,403 - 79,126 observations each § - : 5 ] 4=
* 0-10 mutations per variant with median 2 L Lo
- 3,954 unique mutations represented (of 4,020 possible) P 1 I I R
* Deletions included, but no insertions el o ? |




Data Engineering

One Variant per row

Features
* Individual mutations: e.g. N1A, N1C, N1D, ...

* Antibody type
* Currently no feature selection

* Use sparse matrices

e Also tried:

* Location and types of mutations: e.g. 1,2,3,...,201, AC, AD, ...
» Derived features: e.g. Moreau-Broto autocorrelation, conjoint triad descriptors, etc.

O e B 7 B e T

1 0 -2.93
2 0 0 0 0 1 0 -2.57
3 0 0 0 0 0 0 -2.81
4 0 0 0 0 0 0 -3.19



o I Modeling

Leaky ReLU

Use Keras neural net machine learning model ~ ] |
« Tensorflow backend s i
* Thousands of parameters 3 :
_ |

* Also tried: o !

Xgboost, random forest, support vector machines (too much data) ° '2 '1 g 1' 2'
Input Layer Hidden Layers Input

O
0\0

Output

‘ RelLU RelLU f(x) = x




10 I Tuning

Five-fold cross-validation

* Estimates predictive ability on data outside
of training set

* Hidden assumption: future data is similar to Test Set
data you have

Training Set

Hyperparameters
* Layers:2 or 3
» Sizes: 2%,2°,2%,2°,25,27,28
* RelLU: Leaky or Regular Observations
* 784 possible combinations

Tuning Predictions

* 60 randomly selected combinations
* Choose parameters with best root-mean- l

square-error (RMSE)

Error Statistics



11

Tuning in Loop

Tuning in Loop
* Tune independently within each training

set

 Avoids overfitting in results

Using training
Set only

x60
combos

Repeat five times
for final statistics

\

Now train model on
whole training set

Use RMSE to

> pick best




12 I Results

Statistics used
* Root-mean-square error (RMSE)
VX0 - ) /n

* Where y, are observed endpoints and f, are predictions based
on other data points

* Pearson Correlation

* Cross-validated coefficient of determination (R?)
* Q=1 -3 -/ X0 - »°

Binding results:
« RMSE = 0.56 Alog,o(K.)

* Pearson correlation of 0.96
« Q2=0.9I

Predicted Delta(log10(Ka)) Binding

Binding
RMSE = 0.56, cor = 0.96, Q"2 = 0.91

Observed Delta(log10(Ka)) Binding



13 | Results Cont'd

Expression results:
« RMSE = 0.51 AMean Fluorescence
* Pearson correlation = 0.92
« Q2=0.84

Antibody results:

* Untuned, using 128 x 32 hidden
layers and regular ReLU

 RMSE = 0.55 Alog,,(Escape
Fraction)

 Pearson correlation = 0.81
e Q2=0.64

Fredicted Delta Mean Flucrescence

Predictad lng10{Escape Fraction)

Expression
RMSE = 0.51, cor = 0.92, Q*2 = 0.84

Observed Delta Mean Fluorescence

Antibody
RMSE = 0.55, cor = 0.81, Q*2 = 0.64

Observed log10{Escape Fraction)




14

Antibody Model Issues

Originally made one model for each antibody
» But half of models were mediocre and other half were poor

Why?
» Antibody escape is based on counts before and after an antibody is applied

Lowest count observations are discarded, but the bulk of observations are low-count and high
uncertainty

Removing them degrades model quality even further
Weighting observations did not help
The five poor antibody models are dominated by these observations

Combining model had better statistics than any single antibody model
. Sugges’rs there are sianificant commonalities hetween antihodies

Antibody COV2-2050_400 Antibody COV2-2165_400
RMSE = 0.68, cor = 0.71, Q*2 = 0,49 RMSE = 0.59, cor = 0.39, Q*2 = 0.01

- o]
o =] o > o o

-2 =1 0
| 1

Predicted log10{Escape Fraclion)

Predicted log10{Escape Fraclion)
-3

-4
|

Observed leg10{Escape Fraction) Observed log10{Escape Fraction)




15 | Real Variant Prediction

Our group performed binding assays on wild variants

* Only six can be compared so far
« Can'’t predict insertions
* Alpha is only variant present in training data

* Omicron BA.1.1 has 16 RBD mutations
 BA4/5 has 17, and only 11 in common with BA.1.1

Predicted Delta(log10(Ka)) Binding
-3
1
(N

-+ L]

® Experimental ® Starr Model A ML
| | T T T T T
BA4 Omicron Kappa Gamma Beta Delta Alpha*

QObserved Delta(log10(Ka)) Binding



16 I Results By Mutation

Model quality tends to drop with increasing numbers of mutations for all models
Single mutations and small combinations are well-represented in the data

More complicated mutation combinations are not present, and hard to predict the effect of

Binding Expression Antibody Escape
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Number Observations

17 I Mutation Coverage

Original experiment was designed to find single mutation effects

« Space of variants near Wuhan is well-covered

» Coverage drops quickly with more mutations
« Especially relative to all possible combinations

e Space near omicron variants is unexplored

Binding Expression
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18 I Site Region Selection For Future

Use Starr model single mutation
binding/expression effects

Sum positive and negative ©
binding/expression effects for each

site and scale to a maximum of 1 <
over all sites 5
Increase score by one for site 5«
presence in Omicron BA1.1,

BA4/5, or ACE2 contact site

Find regions with maximum total

scores iteratively N

« Top four regions: 475-505, 365-376,
439-356, 417

* Top four scores: 18.8, 7.2, 4.9, 3.2

Experiments

B Scaled Sum Expression >0 O
B Scaled Sum Binding >0 |
O ACE2.Contact.Sites |
@ BA4/5.Sites

Omicron.Sites
Scaled Sum Binding <0
Scaled Sum Expression <0
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19 | Future Work

Further binding experiments centered on BA4/5
* Train wider mutation set
» Closer to current state of virus
* Further model validation

Antibody tuning
Antibody binding based on antibody sequence/characteristics
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