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ABSTRACT

Dynamic optimization problems arise in many applications including optimal flow control, full waveform inversion, and med-
ical imaging, where they are plagued by significant computational challenges. For example, memory is often a limiting factor
on the size of problems one can solve since the evaluation of derivatives requires the entire state trajectory. Additionally, many
applications employ nonsmooth regularizers such as the L'-norm or the total variation as well as auxiliary constraints on the op-
timization variables. In this paper, we introduce a novel trust-region algorithm for minimizing the sum of a smooth, nonconvex
function and a nonsmooth, convex function that addresses these two challenges. Our algorithm employs randomized sketching
to store a compressed version of the state trajectory for use in derivative computations. By allowing the trust-region algorithm
to adaptively learn the rank of the state sketch, we arrive at a provably convergent method with near optimal memory require-
ments. We demonstrate the efficacy of our method on a parabolic PDE-constrained optimization problem with measure-valued
control variables.

Keywords: Nonsmooth Optimization, Optimal Control, Randomized Sketching, Dynamic Optimization, Compression, PDE-
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INTRODUCTION
We consider the discrete-time dynamic optimization problem

N
min Zf,,(un_hu,,,zn)—i—(pn(zn) subject to cn(tn—1,un,z0) =0 for n=1,...,N, (D

u, €RM, z, €R™ /=)

where z, € R” is the control variable, u, € R is the state variable at the n-th time step for n = 1,...,N, and ug € R is the
prescribed initial system state. Additionally, f, : RY x RM x R™ — R is the objective function associated with the n-th control
and state, ¢, : R™ — (—oo, +oo| is a potentially nonsmooth control penalty function, and ¢, : RM x RM x R™ — RM is the
dynamic constraint function, which advances the state from u,_; to u,. Dynamic optimization problems of the form (1) arise
in many applications, including turbulent flow control [1], energy system operations [2], vortex control in nuclear reactors and
superconductors [3], optimal tomography [4, 5], full waveform inversion [6—8], and airflows in closed environments [9—11]. In
addition, nonsmooth penalties are often used to enforce constraints [12—14] or to ensure sparsity in optimal control, parameter
estimation and learning [15-23].
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The memory required to store the state trajectory {uy,...,uy} and auxiliary information like Lagrange multipliers presents a
significant challenge when solving (1). For example, sequential quadratic programming (SQP) methods require the storage of
N(2M +m) floating point numbers. In full waveform inversion, the spatial discretization size often is M ~ 10'° and the temporal
discretization size is N ~ 10°, requiring the storage of & (1050) floating point numbers [24]. In contrast, if ¢, (up—1,un,2,) =
0 is uniquely solvable for u, with fixed u,_; and z, for each n, then one can reformulate (1) as a minimization problem
only in {zj,...,zy}. On the surface, this approach reduces the memory requirement to Nm. However, when solving the
reduced problem using derivative-based optimization, the gradient calculation requires the entire state trajectory, again leading
to O(N(M + m)) storage. Reducing these storage requirements typically comes at the cost of model fidelity by using, e.g.,
reduced-order models (ROMs) or low-order discretizations [25-27]. The quality of a fixed ROM can degrade as the optimization
routine progresses, leading to adaptive ROM generation [28,29]. Unfortunately, ROMs are generally limited to specific classes
of dynamical systems and can be difficult to implement in legacy codes. On the other hand, for the reduced problem one can
reduce the memory burden using checkpointing [30-33], which stores judiciously chosen snapshots of the state trajectory for
use when computing the gradient. Although this procedure has lower memory requirements, it drastically increases the cost of
computing the gradient.

In this paper, we employ adaptive randomized sketching to compress the state trajectory as in [34] to reduce the memory
requirement for solving (1). In particular, we generate low-rank approximations of the state trajectory that we use to compute
an inexact gradient. In contrast to checkpoint, this approach does not increase the computational burden. We control the
gradient error using the trust-region algorithm introduced in [35], resulting in a provably convergent, low-memory algorithm
for solving (1). We demonstrate our algorithm’s performance on a discretized parabolic PDE-constrained optimization problem
with measure-valued controls.

DYNAMIC OPTIMIZATION PROBLEM FORMULATION
We consider the reduced form of (1) where u, is replaced by the unique solution to ¢(u,—1,u,,z,) = 0 for fixed u,—; and z,. To
formulate the reduced problem, we collect the controls and states into stacked column vectors, denoted by

z=z],....2y]" € Z =RN" and u=[ul,...,uy|" €% =R"M,

We employ the notation U € RM*N to denote the matrix with n-th column u,, for n = 1,...,N. Using this notation, we can
represent the dynamic constraint and objective functions as

c1(uo,u1,21))
c(u,z) = , flu,z) =

en (Uun—1,UN,2N)

™M=

N
Tn(tn2n), and ¢(z) = Z Pn(2n),
n=1

enabling us to rewrite (1) as
min _ f(u,z)+ ¢(z) subject to ¢(u,z) =0. (2)
WX, 2€¥
We assume that f and c¢ are continuously differentiable on % x % and that there exists a control-to-state map z — S(z) : & —
% , where S(z) is the unique state trajectory satisfying ¢(S(z),z) = 0 for each z € Z°. In addition, we require that the state
Jacobian of ¢, denoted dyc(u,z), has a bounded inverse for all controls z € 2. Analogously, we denote the control Jacobian by
dzc(u,z) and the partial derivatives of f by dyf(u,z) and d,f(u,z). The control-to-state map has the form

S1(uo,z1)

S() = 52(51(14(?,11),12) ’

SN(SNfl(’ . 7ZN71)7ZN)

where the implicit function theorem [36, Th. 1.41] ensures that S, and S are continuously differentiable. We can thereby
reformulate (2) as the reduced dynamic optimization problem
min {F(z) = j(z) + ¢(2)}, 3)
e
where j(z) := f(S(z),z) is the reduced objective function. Under the stated assumptions, j is continuously differentiable and
its gradient is given by
Vij(z) = d.f(S(2),2) + (dyc(S(2),2)) " A, @)



where A € RMN solves the adjoint equation
duc(S(2),2) A = ~duf(S(2).2). ()

Recall that the adjoint equation (5) is solved backward in time, starting at n = N and requires the entire state trajectory.

LOW-MEMORY MATRIX APPROXIMATION

For many real-world applications, the state trajectory can be so large as to prohibit storage in working memory. To overcome
this challenge, we utilize low-rank matrix sketching to compress the state, which collects sketched information about the matrix
U from which it can be accurately reconstructed on a fixed storage budget. There are many randomized sketching approaches
available (cf. [34] and the references therein) that can be interchanged with the method described below.

We produce a sketch of the state matrix U € RM*N with target rank r, denoted U", that requires &' (r(M + N)) storage [37]. Let
the sketch parameters be s > k > r. A common choice for these parameters is k = 2r+ 1 and s = 2k + 1. The sketch is defined
by fixing four random linear dimension reduction maps (DRMs) with i.i.d. standard normal entries:

YeRCM  QeRMN @eRM  and  WeRVN
The sketch of U consists of the co-range sketch X, the range sketch Y, and the core sketch Z given by
X =YUeRVN  y=vuQ" eR™*  and Z:=dU¥' cR™.

The range sketch captures the row space (top left singular vectors), the co-range sketch captures the column space (top right
singular vectors), and the core sketch captures their interactions (singular values). Linearity of the sketch allows for the online
computation of U” without storing the full state. Since the columns of the state matrix, U, are computed sequentially, we can
update sketch components X, Y, and Z in an streaming fashion. For example, the co-range sketch X = X(V) is computed as

X0 =9 and X<"):X("_1)+YuneI for n=1,...,N,

where e, is the n-th unit vector. Analogous schemes are used to update Y and Z. The sketching matrices require storing
k(M + N) +s? floating point numbers, and hence for target rank r, the memory requirement is & (r(M +N) +r2).

To recover the state trajectory from the sketching matrices X, ¥, and Z, we first compute QR factorizations of X " and Y [34]
X" =PR, and Y =OR,,
where P € RV*¥ and Q € RM*k, We then solve two small least-squares problems to form the matrix
C = (®Q)' Z((¥P)") e RF**,

The rank-k approximation of U is then given by
U=~QcP'.

This is truncated to rank r by replacing C with its best rank-r approximation. While solving the dynamic optimization problem
(3), we overwrite X and Y with Q and W := CP". For more information see [34, Sect. 3] and the references therein.

SKETCHED TRUST-REGION ALGORITHM

We utilize a trust-region method to solve (3), while leveraging inexact gradient computations resulting from sketching. As
mentioned, our algorithm is an instance of the trust-region method introduced in [35]. Although the method in [35] is provably
convergent in Hilbert space, we restrict our developments to 2 = R”" . Following standard convex analysis notation, we denote
the subdifferential of a proper, closed and convex function y : 2 — (—co, 0| at an arbitrary vector z € Z by

y(z) ={neZyly)=y()+ny—2z VyeZ}

and the effective domain of y and dy by domy := {z € 2| y(z) < e} and domdy = {z € Z|dy(z) # 0}, respectively.
Furthermore, the proximal mapping of y for fixed r > 0 is

Prox,y (v) == argmin {w(2) + & ]2/} (©)
e



Recall that if ¥ = 14 is the indicator function of a nonempty, closed and convex set € C % (i.e., 1y(z) =0if z € € and +
otherwise), then Prox;y, is the metric projection onto ¢’

To develop our convergence theory, we make the following assumptions on the components of the objective function F in (3).

Assumption 1 (Problem Data).

1. The function ¢ : & — (—oo,+o0] is proper, closed and convex.

2. The function j: 2 — R is L-smooth on dom@. That is, j is Fréchet differentiable and its gradient Vj is Lipschitz
continuous with modulus L > 0 on an open set 2 C % containing dom ¢.

3. The objective function F := j+ ¢ is bounded below on dom ¢.

At each iteration of our algorithm, we compute a trial iterate z,‘: that approximately solves the trust-region subproblem
migrg {mi(z) = ji(z) + ¢(2)} subject to |z — z¢ || < Ag, (7)
2€ 7

where z; € dom ¢ is the current iterate, ji is a smooth local model of j around z;, and A; > 0 is the trust-region radius. We
restrict our attention to quadratic models, ji, with the form

Je(@) =5 (z—2) " Bi(z—z) + g (2—zp),

where By = B] € R™>*™N approximates the Hessian of j at z; and g approximates the gradient (e.g., via sketching). For are
example, we employ the sketched Hessian application described in Algorithms A.5 and A.6 in [34].

To ensure convergence of our trust-region algorithm, we require that the trial iterate z,j satisfies the trust-region constraint and
the fraction of Cauchy decrease (FCD) condition:

. h
2z — 2| < Kaahc and  mp(z) —my(2) > Kfcdhkmm{mer”zAk}a (3

where K4, Kfeq > 0 are independent of k and for a fixed positive constant ¢ > 0,
1
hy = 17" ||Proxyg (z — 1gx) — %] -

Commonly, one has K, = 1. Note that (8) ensures that z,j € dom ¢ since the left-hand side of the second inequality would be

—oo otherwise. Given a trial iterate z,:r that satisfies (8), the trust-region algorithm decides whether or not to accept z,‘: based on

the ratio of actual and predicted reduction

oy aredy,  F(z)—F(z]})

k= = .
pred,  my(z) —my(z}))

€))

Here, aredy, is the reduction of the objective function F achieved by z,j relative to z; and pred, is the reduction of the model
my. In particular, if p > 1 for n; € (0,1), we accept ;1 = z,j. Otherwise, we set z;| = Z;. The trust-region algorithm then
increases the radius A if py > 1 for M2 € (M1, 1) and reduces Ay if px < 7;. The algorithmic parameters 0 < 17; < M < 1 are
user-specified with common values 17; = 10~* and 1, = 0.75.

The computation of the gradient of j requires the solution of the backward-in-time adjoint equation (5), which depends on the
state trajectory S(z). Instead of storing the entire state trajectory, we compress S(z) using sketching and then recover each u,,
as needed. This procedure introduces errors in the adjoint and hence gradient. Fortunately, trust-region algorithms are able
to rigorously handle inexact gradients, while guaranteeing global convergence [38—41]. The following assumption describes
the required gradient accuracy and is adapted from [42]. Moreover, this condition is related to the classical conditions used
in [43-45].

Assumption 2 (Inexact Gradient). There exists a constant Kgraq 2> 0, independent of k, such that the gradient g satisfies

g~ Vi(z0)l| < Kgraamin{l, A} V. (10)

We provide implementation details for the inexactness conditions (10) in Algorithm 2 in the following section. Algorithm 2 is a
combination of Algorithm 4 in [35] and the adaptive rank procedure described in Algorithm 4.4 of [34]. We list the nonsmooth
trust-region algorithm in Algorithm 1. This algorithm is closely related to the inexact trust-region algorithm described in [46]
for smooth unconstrained problems and in [39] for convex-constrained problems.



Algorithm 1 Sketched Nonsmooth Trust-Region Algorithm

Require: Initial guess z; € dom @, initial rank parameter ry, initial radius A; > 0,0 < <Mm < 1l,and0<y < pHp <1 <P
1: fork=1,2,...do

2:  Model Selection: Use Algorithm 2 with rank 7 to compute g; and choose By,
3:  Step Computation: Compute z; € 2 that satisfies (8)

4:  Step Acceptance and Radius Update: Compute p; as in (9)
5. if py < 7 then

6: Zi < Zk

7 A1 € [NA A

8 else

9: Zjy] < Zk+

10: if pr € [n1,12) then

1: Ary1 € [1A, AL

12: else
13: Art1 € [Ar, 134

14: end if

15:  end if

16: end for

INEXACT GRADIENT COMPUTATION VIA SKETCHED STATE

In order to describe the adaptive gradient approximation procedure, we first define the adjoint equation residual G : Z x
U x % — U by G(A,u,z) :=dyf(u,z) 4+ (dyc(u,z))*A and denote by A(u,z) € % the solution to the adjoint equation
G(A(u,z),u,z) = 0 for the fixed state u and control z. We further define the map

g(A,u,z) :=d,f(u,z)+ (dzc(u,z))* 7.

When evaluated at u = S(z) and A = A(u,z), g(1,u,z) is the gradient of the reduced objective function j as in (4). By
evaluating g(2,u,z) at the sketch state u” = vec(U")! instead of the full state trajectory u = S(z), we reduce the memory
burden for gradient computation. However, the computed value g"(z) = g(A(u’,z),u’,z) is only an approximation of true
gradient g(A(S(z),2),S5(z),z). Algorithm 2 describes an adaptive procedure for approximating the gradient, using the sketched
state u’.

Algorithm 2 Inexact Gradient Computation with Adaptive Rank

Require: Control iterate z; € R™", initial rank parameter r, sketch object for state u;, trust-region radius Ay > 0, positive
constant Kycate > 0, and tolerance flgrag > 1.
Set T, < Kscale Ak
Compute g < g(A(uy,z),up,z) and hy 1! ||Pr0x,¢,(zk —1gr) — zk”
Set T < Kycale min{/y, Ay}
while 7, > o147 do
while » < min{M,N} do
Compute norm of the constraint residual rnorm < ||c(uf, z)||
if rnorm < Tk+ then
Compute gradient g < g(A(uy,z),up,z;)
break
10: end if
Increase Rank parameter r <— 2r
12: Solve the state equation at z; and resketch to produce uj
13:  end while
14:  Set g < g and compute /i < ! HProxrd, (z —18k) — 2 H
15: Set 7, < 7 and T, < Kycale min{/y, A}
16: end while
17: return Approximate gradient g, = V f(z;) using &(r(M + N) +mN) storage for r < min{M,N}.

R A A

—
—_

!'The notation vec(U) denotes the vector obtained by stacking the columns of U.



To ensure that Algorithm 2 satisfies the required accuracy (10) with finitely many rank updates, we make the following regularity
assumptions on the problem data in (1).

Assumption 3 (Regularity Properties for (1)). The following conditions hold for the data in (1):

1. The set of states corresponding to controls in any open and bounded set 2y C % is bounded: there exists Uy C % open
and bounded such that {u € % |3z € Zy,c(u,z) =0} C %,.

2. There exists singular value thresholds 0 < 6y < 0] < +oo such that for any w € %y and z € %, the state Jacobian matrix
duc(u,z) satisfies 6y < Opin(duc(1,2)) < Omax(duc(u,z)) < oy.

3. The following functions are Lipschitz continuous on %y X 2y with respect to their first arguments, and their respective
Lipschitz moduli are independent of z € % :
(a) the state Jacobian of the constraint dyc(u,z);
(b) the control Jacobian of the constraint dyc(u,z);
(c) the state gradient of the smooth objective term dy f (u,z);
(d) the control gradient of the smooth objective term d, f (u,z).

Using Assumption 3, we can bound the state, adjoint and gradient errors as in [34, Prop. 4.1] and ultimately show that Algo-
rithm 2 produces a gradient approximation that satisfies (10).

Proposition 1 (Proposition 4.1 in [34]). Suppose Assumption 3 holds for a bounded control set 2. Then there exists Ky, k] >0
such that the error in the state satisfies

Ko [[u—S(2)[| < [le(u,2)[| < %1 [[u=S(2)[|, Vu € %, z € 2

where Uy C % is defined in condition 1 of Assumption 3. Additionally, the error in the adjoint is controlled by the adjoint
residual together with the state residual: for some k>,x3 > 0

1A —A(S(z),2)]| < &2 |lc(u,2)|| + &3 ||G(A,0,2)||, Vu,A € %, Vz € Z5.
Therefore, the error in the gradient approximation g(A,u,z) is controlled by the adjoint and state residuals: for some K4, ks >0

8(A,u,2) — g(A(S(2),2),5(2),2)[| = llg(A,u,2) = V[ (2)|| < ks [|c(u,2)[| + &5 [|G(4,u,2) ]

Recall that both the state and adjoint are intermediate variables used to compute the gradient V j(z) and require MN storage
each. The control z only requires mN storage, which is often much smaller in practical applications where m < M. All constants
k; > 0 fori=0,...,5 in Proposition 1 depend only on the finite quantities defined in Assumption 3. We can now prove that
Algorithm 2 produces an approximate gradient that satisfies (10) in finitely many iterations.

Lemma 1 (Adaptive Rank Gradient Approximation). If Assumption 3 holds, then Algorithm 2 produces a gradient ap-
proximation g = g(A(u},zy),u},zy), in finitely many iterations, that satisfies the gradient error bound Assumption 2 with
Kgrad = K4 Kscale Ugrad-

One can prove Lemma 1 using [34, Th. 4.4] and the discussion in Appendix B in [35]. A consequence of Lemma 1 is that
Algorithm 1 is guaranteed to converge as demonstrated in the following result.

Theorem 1 (Convergence of Algorithm 1). Let {z;} be the sequence of iterates generated by Algorithm 1 and assume that
Assumptions 1 and 3 hold. In addition, suppose that there exists an open bounded set 2y C % with {z} C %y and that the
model Hessians By, satisfy

|
Y — =to, where by =1+ max |B.
= by i=1,..k

Then

liminf /i = 0.
k——oo

Proof. The problem data satisfies Assumption 3 and therefore Lemma 1 ensures that Assumption 2 holds. The result then
follows from [35, Th. 3]. O



NUMERICAL RESULTS
In this section, we apply Algorithm 1 to a discretization of the parabolic PDE-constrained optimization problem

1 2
min 5 llu—uall2() +1c(2)

du—Au=0 inQ:=Qx(0,T) an
subject to Vu-n=0 onX:=dQx(0,T).
u(0)=z inQ

Here, Q = (0,1)? and uy(x) = |(sin(27x;) sin(27x2))|'° for x = (x1,x2) € Q and all ¢ € [0, T]. In this application, the control
variable z is a nonnegative, regular Borel measure representing the initial state and we enforce the constraints

C={zeMQ)||zlmea) <a, z(B)>0 VBorelsubsets BC Q},

where a = 0.1 and M(Q) denotes the Banach space of regular Borel measures on Q endowed with the total variation norm.
We discretize the state variable u in space using continuous piecewise linear finite elements on a uniform triangular mesh
(M = 4225) and employ a variational discretization for the controls [47]. We further discretize in time using implicit Euler with
N =501 timesteps for 7' = 2 to arrive at a problem with the form (1). After discretization, the control is represented as a linear
combination of point masses located at the mesh vertices and the nonsmooth term ¢ is the indicator function of the feasible set

%:{Z:(zh...,zm)TeRm Zziga, zi >0 for i=1,...,m}7
i=1

where m = M is the number of mesh vertices. Although the control is time independent, Algorithm 1 is still applicable. We
quantify the memory savings of Algorithm 1 using the compression ratio

full storage 4225 x 501

6= reduced storage k(42254 501) + 52

We solved the discretized problem using Algorithm 1 with Ky.qe = 10~*. For comparison, we also solved it using Algorithm 1
in [35] with fixed-rank sketching and with no sketching. To compute the trial step in line 3 of Algorithm 1, we use the spectral
proximal gradient method described in [35, Alg. 5] with a maximum of 50 iterations. We further set the maximum number of
trust-region iterations to 100. We terminate Algorithm 1 if either

he<107%h or  ||lzf —z < 1070y

Table 1 compares the performance of Algorithm 1 with the fixed-rank (r € {1,...,5}) and full-storage approaches. When
using rank-1 sketching, the algorithm stopped because the norm of the trial step size was smaller than the prescribed tolerance.
Overall, we see a decreasing trend in the number of iterations, resulting from fewer rejected steps as the fixed rank increases.
In comparison, Algorithm 1 finished with the final rank of r = 8. The performance of the full-storage, adaptive sketching, and
fixed-rank with r = 4, 5 approaches are comparable, suggesting that Algorithm 1 is a memory-efficient, application-agnostic
approach to solving dynamic optimization problems with the form (3).

CONCLUSION

In this work, we describe a low memory, application-agnostic approach for solving a class of nonsmooth dynamic optimization
problems without the need to store or recompute the entire state trajectory. Our method uses randomized matrix sketching
to compress the state trajectory for use when solving the adjoint equation and inexactly evaluating the gradient. We employ a
trust-region algorithm to control the gradient approximation by adaptively learning the state sketch rank r < min{M, N}, where
N is the number of time steps and M is the size of each state. In contrast to traditional approaches that require &'(N(M 4 m))
memory (m being the control dimension) or significant recomputation of the state trajectory, our approach greatly reduces the
storage to O (r(M + N) +mN) with no additional computational cost, enabling the solution of large-scale dynamic problems.



rank objective niter nobjs ngrad nhess nobjn nprox 4

*1 | 2.680962e-02 16 17 9 521 1036 1726 148.78

2 | 2.680946e-02 37 38 38 1948 4597 3873 89.12

3 | 2.680946e-02 31 32 32 1635 3759 3248 63.55

4 | 2.680946e-02 22 23 23 1163 2654 2308 49.35

5 | 2.680946e-02 22 23 23 1160 2640 2305 40.31
Adaptive | 2.680946e-02 22 23 25 1162 2530 2309 25.95
Full | 2.680946e-02 23 24 24 1212 2793 2409 -

Table 1: Algorithmic performance summary using fixed rank, adaptive rank, and full storage. The table displays the final
function value (objective), the number of iterations (niter), the number of smooth objective evaluations (nobj), the
number of gradient evaluations (ngrad), the number of hessian evaluations (nhess), the number of nonsmooth objective
evaluations (nobjn), the number of proximal operator evaluations (nprox), and the compression factor ().
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