This paper describes obijective technical results and analysis. Any subjective views or opinions that might/be expressed|in SAND2022-14792C
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2021-14942 C: UUR

Nonlinear Analysis Product Area
Update

PRESENTED BY

Roger Pawlowski

U SRLETHEET OF

@ENERGY ANISA

s Wi Rty

Current Package Owners: Bartlett, Ober, Pawlowski, Phipps
laboratory managed and operated by National
g : ’ ’ ’ p p ’ Technology & Engineering Solutions of Sandia, LLC, a
. wholly owned subsidiary of Honeywell International
Pe rego R I d Za I a n d Teza u r Inc., for the U.S. Department of Energy’s National
’ Nuclear Security Administration under contract DE-
NA0003525. 1
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions/of Sandia, LLC, a wholly.owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration/under contract' DE-NA0003525.

Nonlinear Analaysis Product Area

e Sacado: Automatic differentiation via operator overloading of scalar types
* NOX: Globalized Newton-based solvers

e LOCA: Stability, bifurcation and continuation algorithms

* ROL: Optimization

* Tempus: Time integration

* PIRO: Parameters-In-Response-Out: Utility layer

* Thyra: Abstaction Layer for linear algebra, linear solvers and nonlinear
solvers

* Deprecated: Rythmos and PIKE

Nonlinear Product Area Updates

e Sacado (Phipps)

 Libraryis UVM free

* Tests refactored to be UVM free. Only
certain DFad use-cases require UVM (and
thls won’t change).

. %er on performance portability
lished in TOMS:

e https://dl.acm.org/doi/10.1145/3560262
* Ported to HIP in FY22/Q2

e Porting Sacado to the new MDSpan
(C++23) will substantially simplify the
integration with Kokkos

* NOX/LOCA (Pawlowski/Phipps)
 UVM free

 Householder constraint solver added for
Tpetra stack

* Ported to HIP
* This FY: bordering algorithms for Tpetra

104,

Performance [GFLOP/sec]

Roofline for Panzer AD Kernels on V100 with DFAD

V100

FMA: 7826.1 GFLOP/s

H Int _GradBasis
Int_DivBasis

I DOF

I DOFDiv

Il DOFGrad

|

J

BT

A
C

1071

|

X

Y

Arithmetic Intensity [FLOPs/Byte]

|

-|

F
G

|

100

10!

10?

https://dl.acm.org/doi/10.1145/3560262

Sacado DFAD and HIP| ™™™ ="

* Sacado DFAD objects do dynamic
memory allocation at the point of
use.

* Initialization could happen on host. For
CUDA, UVM simplified this.

* Temporary DFADs in a device kernel
could do allocation at runtime

* HIP does not allow for new and delete
on devicel!!l

* For CUDA we had a memory pool
alternative, but that is not supported
for HIP and will probably be
deprecated from Kokkos.

 If using DFads with HIP we have
switched to allocating temporaries
on host. Be careful to allocate
temporaries for each thread.

* Shared memory is a better option if
you have enough

* Best to use SFAD and SLFAD (also
more performant!)

= ScalarT tmp;

// Loop over the quadrature points, scale the integrand by the
// multiplier, and then perform the actual integration, looping over the
// bases.
for (int ap(@); ap < numQP; ++qp)
{
- tmp = multiplier_ * scalar_(cell, qgp);
+ tmp_(cell) = multiplier_ * scalar_(cell, qp);
for (int basis(@); basis < numBases; ++basis)
- field_(cell, basis) += basis_(cell, basis, gp) * tmp;
+ field_(cell, basis) += basis_(cell, basis, gqp) * tmp_(cell);
} // end loop over the quadrature points
}

/// For storing temporaries, one value per thread
PHX: : View<ScalarT*> tmp_;
/// For storing temporaries, one value per thread
PHX: :View<ScalarT*> tmpd_;

+ + + + +

+ + + + + + + +F + ++ o+

// Allocate temporary
1f (Sacado: :IsADType<ScalarT=::value) {
const auto fadSize = Kokkos::dimension_scalar(field_.get_view());
tmp_ = PHX::View<ScalarT*>("IntegratorBasisTimesScalar: :tmp_",field_.extent(®),fad51ze);
if (fieldMults_.size() > 1)
tmp2_ = PHX::View<ScalarT*=("IntegratorBasisTimesScalar::tmp_",field_.extent(@),fad51ze);
} else {
tmp_ = PHX::View<ScalarT*>("IntegratorBasisTimesScalar: :tmp_",field_.extent(@));
if (fieldMults_.size() > 1)
tmp2_ = PHX::View<ScalarT*=("IntegratorBasisTimesScalar::tmp_",field_.extent(@));

Tempus — Time-Integration Package (ober)

. CP)r[c))l\E/ides time-integration methods for first and second-order
S

= Explicit: X() = f(x(¢),p,t) %(t) = £(x(t),x(¢), p(t),?)
= Implicit: f(x(¢),x(¢),1) =0 £(x(¢),%x(t),x(t),1) = 0

Tempus Steppers

= Developed to support advanced analysis techniques Forward Euler

» Embedded transient sensitivity analysis and UQ capabilities Backward Euler

» Forward and Adjoint Sensitivities Explicit Runge-Kutta (ERK) (15+)

= Couples with ROL to provide transient optimization capabilities Diagonally Implicit Runge-Kutta (DIRK)
. : " ” ey (20+)

Provides “out of the box” capabilities T B o e

= Embedded error analysis for variable time steps IMEX-RK (+Partitioned) (3+)

= Temporal solution interpolation BDF2

= Solution history management Trapezoidal

m 47+ Steppers 1t Order Splitting

Subcycling

= Provides customization capabilities
= Ability to incorporate application-specific time steppers

= Application-specific time-step control for variable time steps = Other features
= Observers — ability to insert application-specific algorithms = Generate consistent initial conditions
= Time-event management, e.g., " FSAL when possible

= Extensive verification & unit testing

= Problem-specific events — switch flipped, x-ray impingement, ... :
P PP v Imping = Documentation (Doxygen)

= Solution/diagnostic/debug/in-situ visualization output
Italicized — latest development

Tempus Development

 Removed deprecated code for major Trilinos 14.0 release.
* Begun examples of Tempus usage.
* Removal of internal usage of ParameterLists (still can construction from them and provide one with
current parameters).
* Improvements to forward and adjoint sensitivity analysis capabilities for L2ZM Embedded
Components
o Enable separate sensitivity ModelEvaluators (MEs) in Forward Sensitivity Analysis (FSA)
integrators.
o Allow 2nd adjoint ME for pseudo-transient adjoint integrator.

ROL (Rridzal)

Reminder: ROL 2.0 released in April 2021.

Update: ROL 1.0 interfaces will be maintained until October 2023, subject to the established
Trilinos deprecation process.

ROL 2.0 transition website:
https://github.com/trilinos/Trilinos/blob/master/packages/rol/Version-2.0.md

New functionality in 2022:

= Module for Optimal Experimental Design (OED) with capabilities to solve A, C, I, R, and D-optimal
design problems. Leverages ROL's existing APl. Example: Optimal sensor placement.

= _NL file solver for ROL. ROL can now be used as an optimization backend to algebraic modeling
languages like AMPL, Pyomo, and JuMP since they export problems in this format.
Functionality planned for 2023:

= Methods to minimize the sum of smooth and nonsmooth functions. This class of problems arises
in sparse estimation and control, imaging, risk-averse optimization and constrained optimization.

= Easily maintainable, “self-generating” Python interface to ROL.
= Several usability improvements: parameter list validation, better finite differencing, etc.

https://github.com/trilinos/Trilinos/blob/master/packages/rol/Version-2.0.md

PIRO (Perego and Tezaur)

Provides driver classes for:

* solving nonlinear (time-dependent) problems
(NOX, Tempus, Epetra/Tpetra solver stack),

e continuation problems and bifurcation analysis
(LOCA),

* time-dependent problems (Tempus),
* computation of forward and adjoint sensitivities
* snapshot PDE-constrained optimization (ROL)

Updates:

* It can build if Epetra is disabled, although testing
coverage should be improved.

* Added forward-only transient tests using Tempus

Plan for FY23:
e Switch to ROL2
* Enable transient PDE-constrained optimization

modeled ice speed observed ice speed Inverted basal parameter

40e-02 04 4. 4.e+1 4e+2 4.0e+03 1.0e-01 1 10 100 1.0e+03

- 00 T
PDE-constrained optimization to calibrate an ice-sheet model of
Greenland by matching observations of surface ice velocity

(Perego, Siam News, 2022)

