This/paper.des b b| ctive technical results'and analysis subijectiv s that might be'expressed in AND2022-1 1
the paper/do not necessal |Iy representthe V|ews of the U.S. D epartment fE gy th U ited States Gowv! rnment. S 0 5091C

AREA 67 Nt

Laboratories

UCF

UNIVERSITY OF CENTRAL FLORIDA

Metrics Packing Efficiency
Fairness o HPC Cluster
Batch Job Scheduling

Alexander V. Goponenko (UCF), Kenneth Lamar (UCF), Christina Peterson (UCF),
Benjamin Allan (SNL), Jim M. Brandt (SNL), and Damian Dechev (UCF)

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Job scheduling on HPC cluster

Job Queue

» Users submit jobs and specify
jobs’ resource requirements
* Essential parameters:
* Number of nodes
e Time limit
» Scheduling algorithms
determine the order of
starting jobs during shortage
of resources

* “Online” scheduling problem
* NP-hard

UCF

Goals of HPC cluster scheduling

Goal 1: Efficiency
» job packing efficiency
Goal 2: Complying with priorities
* priority policy
» fairness: job that waited longer should have higher priority

Goal 3: System responsiveness as perceived by users
* response time

Lifetime of a job

< F j >
response time
« Q ; D ; -
wait time runtime
|

Sj bj ¢ Time

User submits job j m Job j completes

Assumptions

 One resource only
* e.g. hodes

* No job runtime depends on how jobs are scheduled
e i.e. no I/O

* No job arrival time depends on how jobs are scheduled

Popular HPC Schedule Metrics

* Average response time

Goal 1: Efficiency
Goal 3: System responsiveness as perceived by users

* Average slowdown

Goal 3: System responsiveness as perceived by users

« Utilization

Goal 1: Efficiency

Average Response Time (AF)

1
=50, 5
n

1<j<n

 Equal weights for all jobs
« Improves when starting smaller jobs earlier and delaying larger jobs

AF(A) = AF(B)

Schedule A A Schedule B

Allocation
Allocation

L]

\
L
\

Time Time

Average Slowdown

1§ 5
Sld = — Z L
n Dj

1<j<n

» Dramatically improves when starting smaller jobs earlier
* A job with infinitely small runtime makes an infinitely large contribution

Sld(A) < Sld(B)

Schedule A A Schedule B

Allocation
Allocation

Time Time

Average Bounded Slowdown (BSLD)

1 F
BSLD = — Z max | 1,
n mElX(Dj,I‘C)

1<j<n

* A crude patch to alleviate dramatic contribution of small jobs
« Same weights (as in AF) for jobs satisfying D; < k < F;
» No contribution from jobs satisfying F; <

* In practice, k is usually small (e.g. 10 s)
« Still, BSLD dramatically improves when starting smaller jobs earlier

|
UCF

Utilization is determined by maximum
completion time
ZD);T}'

RX (max (¢;) — min (sj))

1<jsn 1<jsn

Utilization =

« “Offline scheduling” metric
* Not suitable for online scheduling

Utilization is determined by maximum
completion time

Utilization =
(n ()

Job arrival time (s;)

Allocation

Time

Utilization is determined by maximum
completion time

Utilization = 7

-
——

-
-

A 1

2N Schedule A

5

2|

M | N] -
A

< Schedule B

B

©

<

Time

Metric coverage of scheduling goals

Goal 1: Efficiency
» Not covered by common metrics

Goal 2: Fairness and complying with priorities
* Not covered by common metrics

Goal 3: System responsiveness as perceived by users
e AF and BSLD

Outline

Metric for Metric for
packing fairness and
efficiency packing efficiency

Example 2: Example 1:

Runtime Scheduling
predictions algorithms

Desired properties

 Easy to calculate

» Reacts to even slightest improvement of the packing
» Improves (reduces) if a job starts earlier

* Doesn’t change if overall resource allocation profile is

unchanged
« Can't be fooled by starting smallest jobs first

Area-Weighted Average Response
Time

« Directly correlates to “job packing efficiency”

Moving a job to an earlier time if resource utilization is not affected, reordering
reduces AWF jobs doesn’t change AWF

-
-

Allocation
Allocation

Time Time

Metric for Fairness and Efficiency

m;

» Desired properties

» Improves (reduces) if
a job starts earlier

« If overall resource allocation profile

Allocation

3

|
]
]

is unchanged, reordering jobs- p
» doesn’t change the metric if all ‘ oo L~
jobs have same priority —— =y

+ reduced the metric if jobs 5 B G -
with higher priority move ==
User submits job j Job j completes

to earlier time

e Course of action
* Treat each iob as a set of small units of computation
m
UCF

L*-Priority Weighted Specific Time

=

* Jobs are prioritized
according to wait time

Allocation

fit) =t—s; F
a = j
p}(t) = (t — Sj) |

S; b; t C;)
J J J Time

Motivation

EASY-Shortest-Job-Backfill-First algorithm is claimed to
outperform normal EASY-Backfill because it improves BSLD.

Plan
 Analyze this claim using BSLD, AF, AWF, and P%SF.
 Simulate scheduling of several real workload traces.

» Also analyze other basic variants of scheduling algorithms
« “Just Backfill”, "EASY”, "Aggressive”
 Queue orders: “FCFS” “SJF” “SAF” “LAF”

m
UCF

' Just backfill (JustBF)
. I

Node limit

Allocation

>

Time

Just backfill (JustBF)

reserve resources

to prevent any further delays

Node limit

Allocation

>

Time

Just backfill (JustBF)

reserve resources

to prevent any further delays

Node limit

Allocation

>

Time

Just backfill (JustBF)

reserve resources

to prevent any further delays

Node limit

Allocation

>

Time

Just backfill (JustBF)

« If @ job cannot run,
reserve resources
to prevent any further delays

Node limit

Allocation

>

Time

Just backfill (JustBF)

e If a job cannot run, —
reserve resources
to prevent any further delays

Node limit

Allocation

>

Time

Just backfill (JustBF)

e If a job cannot run, —
reserve resources
to prevent any further delays

Node limit

Allocation

>

Time

Just backfill (JustBF)

e If a job cannot run, —
reserve resources
to prevent any further delays

Node limit

Allocation

>

Time

Just backfill (JustBF)

« If @ job cannot run,
reserve resources
to prevent any further delays

Node limit

Allocation

>

Time

Just backfill (JustBF)

« If @ job cannot run,
reserve resources
to prevent any further delays

Node limit

Allocation

>

Time

Just backfill (JustBF)

« If @ job cannot run,
reserve resources
to prevent any further delays

Node limit A later job may start
before an earlier job
but cannot delay it

Allocation

>

Time

UCF

' Shortest Job First (SJF)-JustBF

Node limit

Allocation

Time

' Shortest Job First (SJF)-JustBF

' * Sort the queue I - . E—

Node limit

Allocation

Time

' Shortest Job First (SJF)-JustBF

Node limit

e Continue as
reqular JustBF

Allocation

>

Time

' Shortest Job First (SJF)-JustBF

 Continue as EEE—
reqular JustBF

Node limit

Allocation

>

Time

' Shortest Job First (SJF)-JustBF

 Continue as EEE—
reqular JustBF

Node limit

Allocation

>

Time

' Shortest Job First (SJF)-JustBF

 Continue as EEE—
reqular JustBF

Node limit

Allocation

>

Time

' Shortest Job First (SJF)-JustBF

 Continue as EEE—
reqular JustBF

Node limit

Allocation

>

Time

' Shortest Job First (SJF)-JustBF

 Continue as EEE—
reqular JustBF

Node limit

Allocation

>

Time

' Shortest Job First (SJF)-JustBF

 Continue as EEE—
reqular JustBF

Node limit

Allocation

>

Time

' Shortest Job First (SJF)-JustBF

 Continue as EEE—
reqular JustBF

Node limit

Allocation

>

Time

' Shortest Job First (SJF)-JustBF

 Continue as EEE—
reqular JustBF

Node limit

Allocation

>

Time

' Shortest Job First (SJF)-JustBF

 Continue as EEE—
reqular JustBF

Node limit

Allocation

>

Time

' Shortest Job First (SJF)-JustBF

 Continue as EEE—
reqular JustBF

Node limit

Allocation

>

Time

' Shortest Job First (SJF)-JustBF

e Continue as
reqular JustBF

Node limit

Allocation

>

Time

' Shortest Job First (SJF)-JustBF

e Continue as
reqular JustBF

Node limit

Allocation

>

Time

Shortest Job First (SJF)-JustBF

e Continue as
reqular JustBF

Node limit ,
--- Shorter jobs get more

chances to start earlier

Allocation

»

Time

Sort orders

Default : No reorder

SJF : Shortest Job First
 ascending order according to estimated runtime
sometimes we assume that we know real runtime

SAF : Smallest Area First
 ascending order according to job area
* job area is 7;E|
* 1; is resource requirement
* E; is estimated runtime LAF: Largest Area First

LAF : Largest Area First
 descending order according to job area

' EASY backfil
. m] —

Node limit

Allocation

>

Time

EASY backfill

» Make only one reservation
per scheduling round

Node limit

Allocation

>

Time

EASY backfill

» Make only one reservation
per scheduling round

Node limit

Allocation

>

Time

EASY backfill

» Make only one reservation
per scheduling round

Node limit

Allocation

>

Time

' EASY backfil

 Continue “aggressive”
scheduling

Node limit

Allocation

>

Time

' EASY backfil

 Continue “aggressive” EE—
scheduling

Node limit

Allocation

>

Time

' EASY backfil

 Continue “aggressive” EE—
scheduling

Node limit

Allocation

>

Time

EASY backfill

 Continue “aggressive”
scheduling

Node limit ,
--- Simpler than JustBF,

yet starvation free

Allocation

>

Time

UCF

' EASY-Shortest Job Backfill First (SJBF)

Node limit

Allocation

Time

' EASY-Shortest Job Backfill First (SJBF)

Node limit

Allocation

Time

' EASY-Shortest Job Backfill First (SJBF)

Node limit

Allocation

Time

' EASY-Shortest Job Backfill First (SJBF)

Node limit

Allocation

Time

' EASY-Shortest Job Backfill First (SJBF)

 Reorder jobs after - EEE——
the reservation

Node limit

Allocation

Time

' EASY-Shortest Job Backfill First (SJBF)

» Continue “aggressive” - EEEE—
scheduling using the

new order

Node limit

Allocation

>

Time

EASY-Shortest Job Backfill First (SJBF)

» Continue “aggressive” EEEE—
scheduling using the
new order

Node limit

Allocation

»

Time

EASY-Shortest Job Backfill First (SJBF)

» Continue “aggressive” EEEE—
scheduling using the
new order

Node limit

Allocation

»

Time

' EASY-Shortest Job Backfill First (SJBF)

 Continue “aggressive”
scheduling using the
new order

Node limit

Allocation

>

Time

EASY-Shortest Job Backfill First (SJBF)

» Continue “aggressive” S

scheduling using the

new order

. Short jobs have more
c Node limit ,
B chances than in EASY
g (less than in SJF-JustBF),
= still starvation free
Time

UCF

Investigated algorithms

Default
SJF
SAF
LAF

JustBF EASY
JustBFF EASY
SJF-JustBF EASY-SJBF
SAF-JustBF
LAF-JustBF

Workload logs used in benchmarking

CPU # Jobs Utilization Year Duration

KTH-SP2 ! 100 28k 70% 1996 11 months
CTC-SP2 ! 338 77k 85% 1996 11 months
SDSC-SP2 ! 128 60k 83% 2000 24 months
SDSC-BLUE ! 1,152 234k 77% 2003 32 months
CEA-CURIE! 93,312 313k 62% 2012 8 months
BW201911 ¢ 22,636 02k 68% 2019 1 month

1 http://www.cs.huji.ac.il/labs/
2 https://bluewaters.ncsa.illinois.edu/data-sets

66
UCF

http://www.cs.huji.ac.il/labs/
https://bluewaters.ncsa.illinois.edu/data-sets

BSLD of schedules of C7C-SP2

percent changes relative to JustBF

+400% A

+200% A

+100% A

+50% A

0% -

-50% A

-100%

B runtime
timelimit

LAF—JustBF -
EASY -

EASY—-S/BF 4

SJF—JustBF 4
SAF—JustBF 4

Lower is better

67

AWF of schedules of C7C-SP2

Bl runtime
+400% A timelimit
& +200% A
3
S +100% - ,
o Lower is better
S +50% -
T
[
; +20% A
Q
(@)
[
((v)
c
O +10% -
=
(O]
-
(O]
o 0% .
-10%

LAF—JustBF -
EASY
EASY—SJBF -
SJF—JustBF -
SAF—JustBF -

68

P?%SF of schedules of CTC-SP2

Bl runtime
+10 000% 4 o timelimit
+1 000% A Lower is better
+100% A

+20% -

percent changes relative to JustBF

+10% A

0% A

LAF—JustBF -
EASY -
EASY—S/BF A
SJF—JustBF -
SAF—JustBF -

69

» JustBF has best fairness and is best at P*SF

« SAF-Just and SJF-JustBF are better at BSLD, at the expense of
the packing efficiency and fairness

« [AF-JustBFis best in packing efficiency, at the expense of the
other metrics

* When using timelimits, £4SY'is close to JustBF in packing

e

iciency and fairness

Motivation

EASY-SJBF leads to better scheduling (according to ESLD)
when using job runtime estimates (instead of timelimits)

 Variants: “Last2”, "CVH"
Plan

 Analyze how the estimates improve packing efficiency and
fairness (when used with most suitable algorithms for these

targets)
* Also analyz_g other_ pogsible_pre(_:!ig_:t_ors

n
UCF

Metrics improvement if job runtime is used

instead of timelimit for scheduling

0% A

-20% A

-40% A

-60% -

-80% A

0% 1

-5% A

-10% A

-15% A

3D

[JustBF
I EASY-SJBF

- SAF—justBF

e \,\)E C\)R\E

s? s? 191"
VA (% SOSC 5056 ceM B\"ﬂ

AV F

Il [AF—JustBF

[JustBF
Bl EASY
P2 P2 02 \)ﬁ \€ 11
\C‘*‘S cTCS so‘)cs 50‘5°B CEPCUR W20

0% 1

-10% A

-20% A

-30% A

-40%

0% 1

-5% A

-10% A

-15% A

-20% A

-25% A

&

M

W SAF—JustBF

o2 Cs? Cs"2 S»UE oa\e 103
AL S - e T ST
PiF
| [JustBF
I EASY
[EASY-SJBF
2 0 E o
@ 5 ¢ e g05“ - Dsc,s‘\)c@,c\)"*‘ 202
g

72

Last? predictor

predicted average runtime f user submitted
(running) — { \of user’s last 2 jobs|’ 2+ jobs
time

(timelimit) , otherwise

D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling Using System-Generated Predictions Rather than
User Runtime Estimates,” IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 6, pp. 789—
803, Jun. 2007, doi: 10.1109/TPDS.2007.70606.

https://doi.org/10.1109/TPDS.2007.70606

CVT predictor
“Cross-Validation Heuristic Triple”

Table 2: Features extracted from the SWF data, for job 5, belonging to user k.

AVE™ ()
AVES" (p)

AVE (p)

L

AVELL . (a)
..

AVELL, . (0

AVERL (g

Jops CurRERTLY RUNNING
LONGEST CURRENT RUNKING TIME

SUM CURRENT RUNNING TIMES
Oeouren RESOURCES

Break TiME
{r'rm r‘:—: = {ry maod bay))

2T 4 (ry; mod L))

win ;

mm:r" = w (r; mod tweer])
an ==

* (1 mod Lgaae))

Feature Meaning

e the time the user requested for her job.

p_'1“:| the running time of the last job of the same user, or 0 if
such a job does not axist.

]'.I_I_I“:2 the running time of the secomd-to-last job of the same
user, or 0 if N/A.

]'.I:IR_::‘ the running time of the third-to-last job of the same aser,

or 0if N/AL

the average running time of the two last historically
recorded joba of the same nser.

the average runming time of the three last historically
recorded jobs of the same nser.

the sverage running time of all historically recorded jobs
af the same wser.

amount of (CPU) resource requested by job j.

average historical resource regquest of wser k, taken al
release date of job 7.

amount of resource requested normalized by average re-
BOTOE ﬂ‘ill]:'.‘il..

average resource request of the wser’s currently running
jobs, at release date

mumber of joba of the user running, at release date
longest running time {so-far} of the user's currently run-
ning johs, at release date

sum of the running times (so-far) of the user’s currently
running jobs, al release date

total size of resources currently being allocated to the
SAITIE WSET.

Limme elapsed sines last job completion from the same user,

time of the day the job was released. The periodic
feature is decomposed inte its cosinus and sinus,
uaing the day period ta., (length of a day in seconds)

time of the week the job was released. The periodic
feature is decomposed inte its cosinus and sinus,
uaing the weok period £, (length of a day in seconds)

vi-Lalp; — f(x5)) if f(%5) < p;

Lix;, fx5),p5) = {Jh_Lle:x”} —pi) M f(xg) = py

Table 3: Weighting factors considered for training
the model. The constants are chosen to ensure posi-
tivity of the weights with typical running times and
resource requests in the HPC domain. Logarithms
are used to alleviate the high range produced by
ratios.

+ Interpretation

1 Constant weight.

5+ Iog(gj-] Short jobs with large resource request

should be well-predicted.

Long jobs with small resource request

should be well-predicted.

11+ Iog[q;iuj) Jobs of small "area” should be
well-predicted.

5+ |0g{§—f]

Jobs of large "area” should be
well-predicted.

logig;.p;)

ﬂ(xj'! f{x.lj1 P_f]
Underprediction | Overprediction
. - s
w=1l
Lu(2) =%
Lo(z) =2 1+
-1 0 1 Flxs) —py

Figure 1: Example Loss function £, plotted with
respect to the difference of it's second and third pa-
rameters f(x;) — p; (the prediction error).

E. Gaussier, D. Glesser, V. Reis, and D. Trystram, “Improving backfilling by using machine learning to

predict running times,” in SC ’15: Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, Nov. 2015, pp. 1-10. doi: 10.1145/2807591.2807646. g‘"

UCF

74

https://doi.org/10.1145/2807591.2807646

Hierarchy predictor
“Hierarchy of templates”

job/user/time/node * Jobs are classified according to parameters known at

job/user/time/ submission
job/user//node e« user id
job/user// - job name or executable id

job//time/node . timelimit provided by user

jjc? k')o /////t::jé required number of nodes
job/// ¢ Resource requirement is predicted from resource
Juser/time/node utilization of previous jobs from same group
[user/time/ - Exponentially decaying average
e o« If no jobs has finished for the group, a more general
e template from the hierarchy is tried

//time/« When a job finishes, predictions of all 16 groups are

//[node ypdated
/1]

UCF

BSLD of EASY-SJBF relative change

when replacing timelimit with runtime estimates

runtime
100% - Bl [ast?
s CVH

759 B Hierarchy
o -

50% -
Lower is better
25% -

0% A

-25% -

-50% -

-75% -

m
UCF

BSLD of SAF-JustBF relative change

when replacing timelimit with runtime estimates

20% -

-20% - —I
-40% -
-60% -

runtime
-80% -1 W [ast?
B CVH
B Hierarchy

Lower is better

p2 o2 P

P2 1)
a e 505 20%

SP-x predictor
“Survival probability x percent”

« Group jobs using all parameters

Dataset: CTC_SP2 169 jobs with 5=4922 u=176 t=21600 n=16

20000

 Tracks a threshold that separates less I
than x % of longest jobs from the rest

15000 4

e x=2,3,0r4 g
« exponentially decaying weights 8 1hoe07
* Predicts along that threshold S

Less underprediction in the presence

of multi-modal distributions 155 1k 13 1w 14 0

timestamp (s) le7 count

K. Lamar, A. Goponenko, C. Peterson, B. A. Allan, J. M. Brandt, and D. Dechev, “Backfilling HPC Jobs

with a Multimodal-Aware Predictor,” in 2021 IEEE International Conference on Cluster Computing .
(CLUSTER), Sep. 2021, pp. 618—-622. doi: 10.1109/Cluster48925.2021.00093. gﬁ .
UCF

https://doi.org/10.1109/Cluster48925.2021.00093

AWF of LAF-JustBF relative change

when replacing timelimit with runtime estimates

runtime
Bl [ast2
s CVH
B Hierarchy

40% A

30% 1 SP-2

s SP-3
SP—4
20% -
10% - .
° l Lower is better
0% -

-10% -

-20%

79

P%SF of JustBF relative change

when replacing timelimit with runtime estimates

runtime
Bl [ast?
s CVH

B Hierarchy
SP—2
mm SP-3
SP—4
I I Lower is better

+1600% A

+400% A

+100% A |

+25% -

+20% -

o I I
O -

—25% -

\C(W C’YC SDSC SDSC'B CE P\’C B\N 20l gql 80
UCF

« Improving BSLD is easy
« Improving AWF and P*SF by using predictions of running time

is di

ficult

 Underprediction hurts packing efficiency and fairness more than
overprediction

 Current state of the art in estimating job runtime is not
adequate for practical application in job scheduling

Conclusions

» Schedule quality metrics for-
 Packing efficiency (AWF)
« Both packing efficiency and compliance with priorities (P*SF)

* Proof-of-concept examples

* |llustration of trade-offs between improving BSLD and
preserving job packing efficiency and fairness

* Improving JustBF’s packing efficiency and fairness is hard

 Better methods of estimating job runtime are needed
« Underprediction hurts packing efficiency and fairness more than

Acknowledgements

» Thanks to Benjamin Schwaller, Omar Aaziz, Kevin Stroup, and

Cory Lueninghoener for valuable discussions and help
throughout the project

* Thanks to Prof. Dechev team at UCF

» The works at the University of Central Florida were supported
through contracts with Sandia National Laboratories

Sandia National Laboratories is a multi-mission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell

International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA-0003525. SAND #: TODO

UCF

Contacts

agoponenko@knights.ucf.edu
(Alexander Goponenko)

kenneth@knights.ucf.edu
(Kenneth Lamar)

clp8199@knights.ucf.edu
(Christina Peterson)

baallan@sandia.gov
GENEWAE]))

brandt@sandia.gov
(Jim Brandt)

Damian.Dechev@ucf.edu
(Damian Dechev)

mailto:agoponenko@knights.ucf.edu
mailto:kenneth@knights.ucf.edu
mailto:clp8199@knights.ucf.edu
mailto:baallan@sandia.gov
mailto:brandt@sandia.gov
mailto:dechev@cs.ucf.edu

