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• Users submit jobs and specify 
jobs’ resource requirements

• Essential parameters:
• Number of nodes
• Time limit

• Scheduling algorithms 
determine the order of 
starting jobs during shortage 
of resources

• “Online” scheduling problem
• NP-hard

Job scheduling on HPC cluster
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Goal 1: Efficiency
• job packing efficiency

Goal 2: Complying with priorities
• priority policy
• fairness: job that waited longer should have higher priority

Goal 3: System responsiveness as perceived by users
• response time

Goals of HPC cluster scheduling
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Lifetime of a job
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• One resource only
• e.g. nodes

• No job runtime depends on how jobs are scheduled
• i.e. no I/O

• No job arrival time depends on how jobs are scheduled

Assumptions
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• Average response time
Used for:

Goal 1: Efficiency
Goal 3: System responsiveness as perceived by users

• Average slowdown
Used for:

Goal 3: System responsiveness as perceived by users

• Utilization
Used for:

Goal 1: Efficiency

Popular HPC Schedule Metrics
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• Equal weights for all jobs
• Improves when starting smaller jobs earlier and delaying larger jobs
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• Dramatically improves when starting smaller jobs earlier
• A job with infinitely small runtime makes an infinitely large contribution

Average Slowdown
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completion time submit time

resource requirement

total amount of resource
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Metric coverage of scheduling goals
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Desired properties
• Easy to calculate
• Reacts to even slightest improvement of the packing 
• Improves (reduces) if a job starts earlier
• Doesn’t change if overall resource allocation profile is 

unchanged
• Can’t be fooled by starting smallest jobs first

Metric for Packing Efficiency



Area-Weighted Average Response 
Time
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Metric for Fairness and Efficiency
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• Jobs are prioritized 
according  to wait time
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Example 1: Scheduling Algorithms
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• If a job cannot run, 
reserve resources 
to prevent any further delays
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• If a job cannot run, 
reserve resources 
to prevent any further delays

 Just backfill (JustBF)
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n Node limit A later job may start 
before an earlier job 
but cannot delay it



Shortest Job First (SJF )-JustBF

Time

Al
lo

ca
tio

n Node limit



• Sort the queue
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• Continue as
regular JustBF
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• Continue as
regular JustBF
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Shorter jobs get more 

chances to start earlier



 Sort orders
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• Make only one reservation 
per scheduling round
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• Reorder jobs after 
the reservation
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• Continue “aggressive”
scheduling using the 
new order
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• Continue “aggressive”
scheduling using the 
new order

 EASY-Shortest Job Backfill First (SJBF)

Time
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n Node limit Short jobs have more 
chances than in EASY 

(less than in SJF-JustBF), 
still starvation free



Investigated algorithms
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Workload logs used in benchmarking
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1 http://www.cs.huji.ac.il/labs/
2 https://bluewaters.ncsa.illinois.edu/data-sets 

http://www.cs.huji.ac.il/labs/
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Lower is better
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Lower is better
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Lower is better



Scheduling Algorithms: 
Conclusions
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Example 2: Effect of Runtime 
Predictions on Scheduling Quality
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Metrics improvement if job runtime is used 
instead of timelimit for scheduling
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Last2  predictor
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CVT  predictor
“Cross-Validation Heuristic Triple”
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E. Gaussier, D. Glesser, V. Reis, and D. Trystram, “Improving backfilling by using machine learning to 
predict running times,” in SC ’15: Proceedings of the International Conference for High Performance 
Computing, Networking, Storage and Analysis, Nov. 2015, pp. 1–10. doi: 10.1145/2807591.2807646.

https://doi.org/10.1145/2807591.2807646


• Jobs are classified according to parameters known at 
submission

• user id
• job name or executable id
• timelimit provided by user
• required number of nodes

• Resource requirement is predicted from resource 
utilization of previous jobs from same group

• Exponentially decaying average
• If no jobs has finished for the group, a more general 

template from the hierarchy is tried
• When a job finishes, predictions of all 16 groups are 

updated

Hierarchy predictor
“Hierarchy of templates”
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with a Multimodal-Aware Predictor,” in 2021 IEEE International Conference on Cluster Computing 
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Runtime Predictions: 
Conclusions
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Conclusions
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