
Metrics for Packing Efficiency
and Fairness of HPC Cluster

Batch Job Scheduling

Alexander V. Goponenko (UCF), Kenneth Lamar (UCF), Christina Peterson (UCF),
Benjamin Allan (SNL), Jim M. Brandt (SNL), and Damian Dechev (UCF)

SAND2022-15091CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

• Users submit jobs and specify
jobs’ resource requirements

• Essential parameters:
• Number of nodes
• Time limit

• Scheduling algorithms
determine the order of
starting jobs during shortage
of resources

• “Online” scheduling problem
• NP-hard

Job scheduling on HPC cluster

1

Goal 1: Efficiency
• job packing efficiency

Goal 2: Complying with priorities
• priority policy
• fairness: job that waited longer should have higher priority

Goal 3: System responsiveness as perceived by users
• response time

Goals of HPC cluster scheduling

2

Lifetime of a job

3

Timeᵆ� ᵅ� ᵄ� ᵅ� ᵅ� ᵅ�

ᵄ� ᵅ�
wait time

ᵃ� ᵅ�
runtime

ᵃ� ᵅ�
response time

• One resource only
• e.g. nodes

• No job runtime depends on how jobs are scheduled
• i.e. no I/O

• No job arrival time depends on how jobs are scheduled

Assumptions

4

• Average response time
Used for:

Goal 1: Efficiency
Goal 3: System responsiveness as perceived by users

• Average slowdown
Used for:

Goal 3: System responsiveness as perceived by users

• Utilization
Used for:

Goal 1: Efficiency

Popular HPC Schedule Metrics

5

• Equal weights for all jobs
• Improves when starting smaller jobs earlier and delaying larger jobs

6

number of jobs

Time

Al
lo

ca
tio

n

Time
Al

lo
ca

tio
n

• Dramatically improves when starting smaller jobs earlier
• A job with infinitely small runtime makes an infinitely large contribution

Average Slowdown

7Time

Al
lo

ca
tio

n

Time
Al

lo
ca

tio
n

runtime

response time

8

parameter (constant)

completion time submit time

resource requirement

total amount of resource

10Time

Al
lo

ca
tio

n

11Time

Al
lo

ca
tio

n
Al

lo
ca

tio
n

Metric coverage of scheduling goals

12

13

Outline Metric for
packing

efficiency

Metric for
fairness and

packing efficiency

Example 1:
Scheduling
algorithms

Example 2:
Runtime

predictions

Desired properties
• Easy to calculate
• Reacts to even slightest improvement of the packing
• Improves (reduces) if a job starts earlier
• Doesn’t change if overall resource allocation profile is

unchanged
• Can’t be fooled by starting smallest jobs first

Metric for Packing Efficiency

Area-Weighted Average Response
Time

15

“squash” area

Time
Al

lo
ca

tio
n

Time

Al
lo

ca
tio

n
resource requirement

Metric for Fairness and Efficiency

16

ᵅ�

• Jobs are prioritized
according to wait time

17

Example 1: Scheduling Algorithms

18

 Just backfill (JustBF)

Time

Al
lo

ca
tio

n Node limit

• If a job cannot run,
reserve resources
to prevent any further delays

 Just backfill (JustBF)

Time

Al
lo

ca
tio

n Node limit

• If a job cannot run,
reserve resources
to prevent any further delays

 Just backfill (JustBF)

Time

Al
lo

ca
tio

n Node limit

• If a job cannot run,
reserve resources
to prevent any further delays

 Just backfill (JustBF)

Time

Al
lo

ca
tio

n Node limit

• If a job cannot run,
reserve resources
to prevent any further delays

 Just backfill (JustBF)

Time

Al
lo

ca
tio

n Node limit

• If a job cannot run,
reserve resources
to prevent any further delays

 Just backfill (JustBF)

Time

Al
lo

ca
tio

n Node limit

• If a job cannot run,
reserve resources
to prevent any further delays

 Just backfill (JustBF)

Time

Al
lo

ca
tio

n Node limit

• If a job cannot run,
reserve resources
to prevent any further delays

 Just backfill (JustBF)

Time

Al
lo

ca
tio

n Node limit

• If a job cannot run,
reserve resources
to prevent any further delays

 Just backfill (JustBF)

Time

Al
lo

ca
tio

n Node limit

• If a job cannot run,
reserve resources
to prevent any further delays

 Just backfill (JustBF)

Time

Al
lo

ca
tio

n Node limit

• If a job cannot run,
reserve resources
to prevent any further delays

 Just backfill (JustBF)

Time

Al
lo

ca
tio

n Node limit A later job may start
before an earlier job
but cannot delay it

Shortest Job First (SJF)-JustBF

Time

Al
lo

ca
tio

n Node limit

• Sort the queue

Shortest Job First (SJF)-JustBF

Time

Al
lo

ca
tio

n Node limit

• Continue as
regular JustBF

Shortest Job First (SJF)-JustBF

Time

Al
lo

ca
tio

n Node limit

• Continue as
regular JustBF

Shortest Job First (SJF)-JustBF

Time

Al
lo

ca
tio

n Node limit

• Continue as
regular JustBF

Shortest Job First (SJF)-JustBF

Time

Al
lo

ca
tio

n Node limit

• Continue as
regular JustBF

Shortest Job First (SJF)-JustBF

Time

Al
lo

ca
tio

n Node limit

• Continue as
regular JustBF

Shortest Job First (SJF)-JustBF

Time

Al
lo

ca
tio

n Node limit

• Continue as
regular JustBF

Shortest Job First (SJF)-JustBF

Time

Al
lo

ca
tio

n Node limit

• Continue as
regular JustBF

Shortest Job First (SJF)-JustBF

Time

Al
lo

ca
tio

n Node limit

• Continue as
regular JustBF

Shortest Job First (SJF)-JustBF

Time

Al
lo

ca
tio

n Node limit

• Continue as
regular JustBF

Shortest Job First (SJF)-JustBF

Time

Al
lo

ca
tio

n Node limit

• Continue as
regular JustBF

Shortest Job First (SJF)-JustBF

Time

Al
lo

ca
tio

n Node limit

• Continue as
regular JustBF

Shortest Job First (SJF)-JustBF

Time

Al
lo

ca
tio

n Node limit

• Continue as
regular JustBF

Shortest Job First (SJF)-JustBF

Time

Al
lo

ca
tio

n Node limit

• Continue as
regular JustBF

Shortest Job First (SJF)-JustBF

Time

Al
lo

ca
tio

n Node limit

• Continue as
regular JustBF

Shortest Job First (SJF)-JustBF

Time

Al
lo

ca
tio

n Node limit
Shorter jobs get more

chances to start earlier

 Sort orders

 EASY backfill

Time

Al
lo

ca
tio

n Node limit

• Make only one reservation
per scheduling round

 EASY backfill

Time

Al
lo

ca
tio

n Node limit

• Make only one reservation
per scheduling round

 EASY backfill

Time

Al
lo

ca
tio

n Node limit

• Make only one reservation
per scheduling round

 EASY backfill

Time

Al
lo

ca
tio

n Node limit

• Continue “aggressive”
scheduling

 EASY backfill

Time

Al
lo

ca
tio

n Node limit

• Continue “aggressive”
scheduling

 EASY backfill

Time

Al
lo

ca
tio

n Node limit

• Continue “aggressive”
scheduling

 EASY backfill

Time

Al
lo

ca
tio

n Node limit

• Continue “aggressive”
scheduling

 EASY backfill

Time

Al
lo

ca
tio

n Node limit
Simpler than JustBF,
yet starvation free

 EASY-Shortest Job Backfill First (SJBF)

Time

Al
lo

ca
tio

n Node limit

 EASY-Shortest Job Backfill First (SJBF)

Time

Al
lo

ca
tio

n Node limit

 EASY-Shortest Job Backfill First (SJBF)

Time

Al
lo

ca
tio

n Node limit

 EASY-Shortest Job Backfill First (SJBF)

Time

Al
lo

ca
tio

n Node limit

• Reorder jobs after
the reservation

 EASY-Shortest Job Backfill First (SJBF)

Time

Al
lo

ca
tio

n Node limit

• Continue “aggressive”
scheduling using the
new order

 EASY-Shortest Job Backfill First (SJBF)

Time

Al
lo

ca
tio

n Node limit

• Continue “aggressive”
scheduling using the
new order

 EASY-Shortest Job Backfill First (SJBF)

Time

Al
lo

ca
tio

n Node limit

• Continue “aggressive”
scheduling using the
new order

 EASY-Shortest Job Backfill First (SJBF)

Time

Al
lo

ca
tio

n Node limit

• Continue “aggressive”
scheduling using the
new order

 EASY-Shortest Job Backfill First (SJBF)

Time

Al
lo

ca
tio

n Node limit

• Continue “aggressive”
scheduling using the
new order

 EASY-Shortest Job Backfill First (SJBF)

Time

Al
lo

ca
tio

n Node limit Short jobs have more
chances than in EASY

(less than in SJF-JustBF),
still starvation free

Investigated algorithms

65

Workload logs used in benchmarking

66

1 http://www.cs.huji.ac.il/labs/
2 https://bluewaters.ncsa.illinois.edu/data-sets

http://www.cs.huji.ac.il/labs/
https://bluewaters.ncsa.illinois.edu/data-sets

67

Lower is better

68

Lower is better

69

Lower is better

Scheduling Algorithms:
Conclusions

70

Example 2: Effect of Runtime
Predictions on Scheduling Quality

71

Metrics improvement if job runtime is used
instead of timelimit for scheduling

72

ᵃ�ᵃ�

ᵄ� 2ᵄ�ᵃ�

ᵃ�ᵄ�ᵃ�ᵃ�

ᵃ�ᵄ� ᵃ�

Last2 predictor

73

D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling Using System-Generated Predictions Rather than
User Runtime Estimates,” IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 6, pp. 789–
803, Jun. 2007, doi: 10.1109/TPDS.2007.70606.

https://doi.org/10.1109/TPDS.2007.70606

CVT predictor
“Cross-Validation Heuristic Triple”

74

E. Gaussier, D. Glesser, V. Reis, and D. Trystram, “Improving backfilling by using machine learning to
predict running times,” in SC ’15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, Nov. 2015, pp. 1–10. doi: 10.1145/2807591.2807646.

https://doi.org/10.1145/2807591.2807646

• Jobs are classified according to parameters known at
submission

• user id
• job name or executable id
• timelimit provided by user
• required number of nodes

• Resource requirement is predicted from resource
utilization of previous jobs from same group

• Exponentially decaying average
• If no jobs has finished for the group, a more general

template from the hierarchy is tried
• When a job finishes, predictions of all 16 groups are

updated

Hierarchy predictor
“Hierarchy of templates”

75

job/user/time/node
job/user/time/
job/user//node

job/user//
job//time/node

job//time/
job///node

job///
/user/time/node

/user/time/
/user//node

/user//
//time/node

//time/
///node

///

76

Lower is better

77

Lower is better

78

K. Lamar, A. Goponenko, C. Peterson, B. A. Allan, J. M. Brandt, and D. Dechev, “Backfilling HPC Jobs
with a Multimodal-Aware Predictor,” in 2021 IEEE International Conference on Cluster Computing
(CLUSTER), Sep. 2021, pp. 618–622. doi: 10.1109/Cluster48925.2021.00093.

https://doi.org/10.1109/Cluster48925.2021.00093

79

Lower is better

80

Lower is better

Runtime Predictions:
Conclusions

81

Conclusions

82

• Thanks to Benjamin Schwaller, Omar Aaziz, Kevin Stroup, and
Cory Lueninghoener for valuable discussions and help
throughout the project

• Thanks to Prof. Dechev team at UCF
• The works at the University of Central Florida were supported

through contracts with Sandia National Laboratories

Acknowledgements

83

Sandia National Laboratories is a multi-mission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA-0003525. SAND #: TODO

Contacts
agoponenko@knights.ucf.edu

 (Alexander Goponenko)
kenneth@knights.ucf.edu

 (Kenneth Lamar)
clp8199@knights.ucf.edu

 (Christina Peterson)
baallan@sandia.gov

 (Benjamin Allan)
brandt@sandia.gov

 (Jim Brandt)
Damian.Dechev@ucf.edu

 (Damian Dechev)

mailto:agoponenko@knights.ucf.edu
mailto:kenneth@knights.ucf.edu
mailto:clp8199@knights.ucf.edu
mailto:baallan@sandia.gov
mailto:brandt@sandia.gov
mailto:dechev@cs.ucf.edu

