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NIF is uniquely capable of addressing preheat scaling to next-gen

pulsed power facilities for MagLIF

>40 MA
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NIF is uniquely capable of addressing preheat scaling to next-gen

pulsed power facilities for MagLIF

>40 MA
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Recently, a cryogenic gas pipe platform has been developed for
<~5 mg/cc D2 fill density experiments at NIF

Cryogenic targets with D2 fills: 1 cm-long, N220517: 4 mg/cc D2 fill,
6 mm diameter, 2.375 um kapton windows 1.9x10'4 W/cm2, ~35 kJ
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The primary diagnostics are an x-ray streak camera (DISC), x-ray
framing camera (GXD), and backscatter (SRS and SBS)

X-ray Streak Camera (DISC) SRS is ~600 J, with no SBS
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The fill density has been scanned from 1.6 to 5.1 mg/cc, with
>20 kJ of laser energy coupling at the highest density

MagLIF relevant: 3.8-5.8 mg/cc
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The warm propagation data compares well with the 1D analytical
inverse Bremsstrahlung absorption model of Denavit and Phillion

Laser absorption Laser propagation front
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* This model excludes hydrodynamic expansion, thermal conduction, ion heating,
and all transverse effects

Denavit and Phillion, PoP 1, 1994
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The warm hydrocarbon data and 5.1 mg/cc D2 data can be fit with
the functional form z:=a(t-b)?-°

11.5% nc CH: a=3.69 17.1% nc D2: a=3.9
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Applying the same methodology to the 3.2 and 4 mg/cc fills, the fit
disagrees with the model

Model a: 10.7% nc=7.3, 12.3% nc=5.6 17.1% nc D2: a=3.9
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The balance between hydro expansion and thermal conduction is
complex and matters to the propagation

Hydro expansion is driven by pressure

* The Denavit and Phillion model relates
(P=nkT) and reduces density on axis

T, and n_ near the target entrance as

”' e T' e T52~n,
— * This suggests P~n"®, and k~n
3w laser .- Z(t)

« Reducing density reduces impact of
Thermal conduction (k~T572) heats a hydro more rapidly than conduction

larger effective spot size
* |f conduction effects are dominant the

laser propagation will be slower and
energy coupling higher than modeled
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Future experiments with the D2 fills will measure energy coupling
to the plasma using Visar and will magnetize the targets

= The current energy coupling at 5.1 mg/cc is >20 kJ,
and consistent with the design space of future
MagLIF designs

= The data are being compared with Hydra simulations,
and additional experiments will provide better
statistics

= NIF is modifying its pulsed power system to
accommodate magnetized cryo targets in FY24
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