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Abstract— The state of charge (SoC) estimated by Battery 

Management Systems (BMSs) could be vulnerable to False Data 

Injection Attacks (FDIAs), which aim to disturb state estimation. 

Inaccurate SoC estimation, due to attacks or suboptimal estima-

tors, could lead to thermal runaway, accelerated degradation of 

batteries, and other undesirable events. In this paper, an ambient 

temperature-dependent model is adopted to represent the physics 

of a stack of three series-connected battery cells, and an Unscented 

Kalman Filter (UKF) is utilized to estimate the SoC for each cell. 

A Cumulative Sum (CUSUM) algorithm is used to detect FDIAs 

targeting the voltage sensors in the battery stack. The UKF was 

more accurate in state and measurement estimation than the Ex-

tended Kalman Filter (EKF) for Maximum Absolute Error (MAE) 

and Root Mean Squared Error (RMSE). The CUSUM algorithm 

described in this paper was able to detect attacks as low as ±𝟏 𝒎𝑽 

when one or more voltage sensor was attacked under various am-

bient temperatures and attack injection times. 

Keywords— ambient temperature, anomaly detection, cumula-

tive sum, false data injection attacks, smart grid. 

I. INTRODUCTION 

Cyberattacks on power grids and other cyber-physical 
systems (CPS) around the world have caused blackouts and 
other undesirable consequences. Notable examples of cyberat-
tacks were the 2015 cyberattack on Ukraine’s power grid and 
the 2010 discovery of the Stuxnet worm that was found in 
Iranian Industrial plants [1]. The discovery of these attacks and 
their consequences demonstrated the importance of 
implementing defenses to cyber threats targeting the smart grid. 

Energy storage systems (ESSs) are connected to the smart 
grid to help keep up with energy demands and to integrate re-
newable generation sources. Battery ESS (BESS) have recently 
become popular due to their increased efficiency and reduced 
cost [2]. Lithium-ion (Li-ion) batteries are the most used BESS 
technology [3] because of their relatively low-cost, high-energy 
density, high power density, and long lifespan [3], [4]. 

Battery cells require a battery management system (BMS) to 
monitor sensor readings (typically current, voltage, and temper-
ature), to balance cells, to ensure that batteries operate within 
their safety limits, and to estimate battery states like the state of 
charge (SoC) [5]. SoC is the ratio of available charge in a battery 
relative to the total capacity of the battery and it cannot be meas-
ured directly. Accurate SoC estimation is crucial for safe opera-
tion of the battery, including its charge and discharge cycles [6]. 
Errors in SoC estimation in grid-scale BESS could result in ther-
mal runaway events (overheating, fires, or explosions), the deg-
radation and reduced lifetime of batteries, increased costs to re-
place damaged equipment, or decreased reliability of systems 
(including blackouts) [5] - [8]. 

Variations of the Kalman Filter (KF), like the Extended KF 
(EKF) and the Unscented KF (UKF), can be used as estimators 
in nonlinear systems like battery cells. The EKF works well for 
systems that can be represented by a linear approximation but 
performs sub-optimally in systems with extreme nonlinearities 
[9]. The UKF works well under any nonlinearity and uses a col-
lection of Sigma Points (SPs) to represent the probability distri-
bution of the nonlinear function. Theoretically, the UKF can 
provide more accurate state estimation than the EKF [5]. EKFs 
have been used to estimate battery states in electric vehicle bat-
teries [4], and in temperature-dependent Li-ion battery applica-
tions [10]. UKFs have been studied for nonlinear estimation in 
[9] and have also been used in power battery applications [6] and 
in personal navigation [11]. In this paper a UKF is implemented 
to estimate the states of a stack of three batteries whose internal 
parameters are dependent on the ambient temperature. Some 
simplified equivalent circuit models (ECMs) used to represent 
battery dynamics do not include the effects of cell or ambient 
temperature [4]. Papers such as [12] and [10] assert that battery 
parameters are ambient temperature-dependent (ATD). 

False Data Injection Attacks (FDIAs) are cyberattacks that 
alter measurements in a CPS before they are used in state esti-
mation, to cause inaccurate estimation [13]. FDIAs are typically 
designed by attackers who have knowledge of the system con-
figuration, parameters, or state matrices [13]. In literature, 
FDIAs have been detected using statistical methods like the chi-
squared test [14] and variations of the CUSUM algorithm [15], 
[16], or with data driven methods [17]. Previously published 
work [18] applied the CUSUM to FDIA detection in battery 
stacks but used an EKF for SoC estimation considering constant 
temperature battery stack models. 
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In this paper, we extend [18] to increase the accuracy of SoC 
estimation and FDIA detection. The contribution of this paper is 
to use the CUSUM algorithm to detect FDIA in the voltage sen-
sors of the ATD model proposed in [10] under various ambient 
temperatures. Additionally, a UKF replaces the EKF used in 
[10] to estimate more accurately the SoC of each battery cell.  

The remainder of this paper is organized as follows. Section 
II describes the ATD ECM for a stack of series-connected bat-
teries and presents the UKF algorithm and the FDIA model. Sec-
tion III describes the CUSUM algorithm taken from [18]-[21]. 
Section IV demonstrates the effectiveness of the CUSUM algo-
rithm by testing the UKF and CUSUM algorithm at a variety of 
ambient temperatures, the results of which are presented in Sec-
tion V. Section VI concludes this paper. 

II. SOC ESTIMATION FOR ATD BATTERY STACKS 

A. ATD ECM 

The ATD ECM for the jth cell in a series connected stack of 
N batteries was adopted from [10] (Fig. 1.). Like the study in 
[18], three series-connected battery cells were studied. 

 

Fig. 1. ATD ECM for the jth cell in a series-connected stack of N batteries [10]. 

𝑖∗ indicates the element is ATD and 𝑖† indicates the element is SoC-dependent. 

Continuous general governing equations (1) – (9) for the jth 
cell in the battery stack can be derived from Fig. 1 [10].  

 𝑉̇𝑪𝒏 ,𝑗 =
𝑉𝐶𝑛 ,𝑗

𝑅𝑛,𝑗(𝑇)𝐶𝑛,𝑗(𝑇)
+

𝑉𝐶𝑝,𝑗

𝑅𝑛,𝑗(𝑇)𝐶𝑛,𝑗(𝑇)
 (1) 

 𝑉̇𝐶𝑝,𝑗 = −
𝑉𝐶𝑛,𝑗

𝑅𝑛,𝑗(𝑇)𝐶𝑝,𝑗(𝑇)
+

𝑖𝑏𝑎𝑡

𝐶𝑝,𝑗(𝑇)
−

𝑉𝐶𝑝,𝑗(𝑅𝑛,𝑗(𝑇)+𝑅𝑝,𝑗(𝑇))

𝐶𝑝,𝑗(𝑇)𝑅𝑛,𝑗(𝑇)𝑅𝑝,𝑗(𝑇)
  

(2) 

 𝑉hs,j = 𝑝10𝜍𝑗 + 𝑝00 (3) 

 𝑉𝑜𝑐,𝑗 = 𝑝30𝜍𝑗
3 + 𝑝21𝜍𝑗

2(𝑇) + 𝑝20𝜍𝑗
2 +  𝑝11𝜍𝑗(𝑇) +

𝑝10𝜍𝑗 + 𝑝01(𝑇) + 𝑝00  
(4) 

 𝑉𝑇𝐶𝑉,𝑗 = 𝑝02(𝑇)2 + 𝑝01(𝑇) + 𝑝00 (5) 

 𝑉𝑇𝑂𝑉,𝑗 = 𝑉𝑜𝑐,𝑗 + 𝑉𝐶𝑝 ,𝑗 + 𝑅0,𝑗(𝑇)𝑖𝑏𝑎𝑡 + 𝑉ℎ𝑠,𝑗 +

𝑉𝑇𝐶𝑉,𝑗  
(6) 

 𝑉𝑠𝑡𝑎𝑐𝑘 = 𝑉𝑇𝑂𝑉,1 + ⋯ + 𝑉𝑇𝑂𝑉,𝑁 (7) 

 𝑖𝑏𝑎𝑡 = 𝑖𝑐 + 𝑖𝑑 (8) 

 
ς̇𝑗 =

1

𝐶𝑐𝑎𝑝,𝑗

(𝜂𝑐,𝑗𝑖𝑐 + 𝑖𝑑) − 𝜂𝑠,𝑗𝜍𝑗 
(9) 

where T is the ambient temperature, 𝑖𝑏𝑎𝑡 is the current through 
the battery stack,  𝑉𝑠𝑡𝑎𝑐𝑘 is the battery stack’s voltage, 𝑖𝑐 ≥ 0 
and 𝑖𝑑 ≤ 0 are the charge and discharge current, respectively. 
The remainder of the parameters varied from cell to cell and the 
subscript 𝑝,𝑗  indicates a parameter is for the jth battery cell. 

Where 𝑅0,𝑗 is the battery ohmic resistance, 𝜍𝑗 is the SoC, 𝑉𝑜𝑐,𝑗  is 

the open circuit voltage, 𝑉𝑇𝑂𝑉,𝑗  is the voltage drop across the 

cell, 𝑉𝑇𝐶𝑉,𝑗 is the temperature compensation voltage, 𝑉ℎ𝑠,𝑗 is the 

static hysteresis voltage, as described in [10]. 

 Coefficients for each cell are listed in TABLE I, where the 
coefficients for Cell 1 were taken from [10]. The remaining co-
efficients for Cell 2 and Cell 3 were determined by adding a 
small random value to the coefficients from [10] and fitting a 
curve to the data. 

TABLE I.  BATTERY MODEL VOLTAGE COEFFICIENTS [10]. 

 𝒑𝟑𝟎 𝒑𝟐𝟏 

(10-3) 

𝒑𝟐𝟎 𝒑𝟏𝟏 

(10-3) 

𝒑𝟏𝟎 

(10-2) 

𝒑𝟎𝟐 

(10-6) 

𝒑𝟎𝟏 

(10-3) 

𝒑𝟎𝟎 

𝑽𝐨𝐜,𝟏 1.36 -5 -1.917 7 8.79 - −2 3.149 

𝑽𝐡𝐬,𝟏 - - - - −7.55 - - 0.0755 

𝑽𝐓𝐂𝐕,𝟏 - - - - - −9.2 1.2 -0.097 

𝑽𝐨𝐜,𝟐 1.37 -5 -1.921 7.1 8.867 - -2 3.149 

𝑽𝐡𝐬,𝟐 - - - - -7.27 - - 0.07353 

𝑽𝐓𝐂𝐕,𝟐 - - - - - -9.98 1.242 -0.0964 

𝑽𝐨𝐜,𝟑 1.37 -5 -1.923 7.06 9.02 - -2 3.149 

𝑽𝐡𝐬,𝟑 - - - - -7.869 - - 0.077 

𝑽𝐓𝐂𝐕,𝟑 - - - - - -10.75 1.188 -0.0953 

General polynomial equations to find the ATD internal bat-
tery parameters (10) were adopted from [10]. The list of ATD 
internal battery coefficients is presented in TABLE II. 

𝑃𝑛,𝑗  = 𝑝03𝑇3 + 𝑝02𝑇2 + 𝑝01𝑇 + 𝑝00 (10) 

where 𝑝𝑘𝑙  is a coefficient in the SoC and T dependent equations, 
𝑘 corresponds to the order of the SoC and 𝑙 corresponds to the 
order of T. The polynomial 𝑃𝑛,𝑗 could represent 

𝑅𝑛,𝑗, 𝑅𝑝,𝑗 , 𝐶𝑝,𝑗 , 𝐶𝑛,𝑗 , or 𝐶𝑐𝑎𝑝,𝑗, which are resistor and capacitor 

values for the series and parallel RC pairs (Fig. 1.) and 𝐶𝑐𝑎𝑝,𝑗 is 

the capacity of the battery. 

B. Unscented Kalman Filter 

The UKF is used to estimate system states for an ATD bat-
tery stack model, due to the nonlinearity in the output equation 
of the model. The state transition function (11) and output func-
tion (12) are influenced by process and measurement noise, re-
spectively. 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘) (11) 

𝑦𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘, 𝑒𝑘) (12) 

where 𝑥𝑘 is a vector of state variables: the SoC (𝜍𝑗) ∈ [0,1], and 

the voltage drops across the parallel (𝑉𝑝,𝑗) and series (𝑉𝑛,𝑗) RC 

pairs ,  𝑢𝑘 is a vector of system inputs: 𝑖𝑐 and 𝑖𝑑, 𝑦𝑘  is the system 



outputs: the cell voltages (𝑉𝑇𝑂𝑉,𝑗) and 𝑉𝑠𝑡𝑎𝑐𝑘 . The noise 

(𝑤𝑘~ 𝒩(0, 𝑄) and 𝑒𝑘~𝒩(0, 𝑅)) are assumed to be additive 
Gaussian noise. 

The UKF uses a collection of SPs to represent the probability 
density of the nonlinear measurement equation. The state equa-
tion is linear in this case, so states are predicted using the same 
technique as the traditional KF. The UKF follows four main 
steps: initialization (performed once), prediction of states, cal-
culation of SP and weights, and correction/update, the latter 
three are performed recursively to estimate states over time [11]. 

Step 1: Initialization (13) – (14). 

 𝑥̂0|0 = 𝔼[𝑥0] (13) 

 𝑃0|0 = 𝑃0 (14) 

where 𝑃0 is the initial covariance and 𝑥0 is the initial state. 

Step 2: Prediction of States (15) – (16). 

This step is done with the same method as the traditional KF 
since the nonlinearity only affects the output equation. 

 𝑥̂𝑘+1|𝑘 = 𝐴𝑥̂𝑘|𝑘 + 𝐵𝑢𝑘 (15) 

 𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘|𝑘𝐴𝑇 + 𝑄𝑘 (16) 

 Step 3: Generate the SPs and associated weights (17) – (23). 

 There are (2n+1) SPs used to represent the probability den-
sity of the nonlinear function, n is the number of states. The SPs 
(17) – (19) are centered around the mean of the function. 

 𝒳0𝑘+1|𝑘
= 𝑥̂𝑘+1|𝑘  (17) 

 
𝒳𝑖𝑘+1|𝑘

= 𝑥̂𝑘+1|𝑘 + (√(𝑛 + 𝜆)𝑃𝑘+1|𝑘)
𝑖

 (18) 

 
𝒳𝑖+𝑛𝑘+1|𝑘

= 𝑥̂𝑘+1|𝑘 − (√(𝑛 + 𝜆)𝑃𝑘+1|𝑘)
𝑖

 (19) 

where 𝑥̂ is the estimated state vector, 𝑃 is the covariance matrix, 
𝒳 is the SP matrix with dimensions 𝑛 × (2𝑛 + 1), 𝜆 is a scaling 
parameter, and 𝑖 = 1, … , 2𝑛. The portion under the radical is a 
positive-definite matrix that is calculated using Cholesky de-
composition for the lower triangle, as done in [11]. The weights 
for each sigma point are also calculated (20) – (23). 

 𝑊𝑚
0

𝑘+1|𝑘
=

𝜆

𝑛+𝜆
  (20) 

 𝑊𝑐
0

𝑘+1|𝑘
= 𝑊𝑚

0
𝑘+1|𝑘

+ (1 − 𝑎2 + 𝑏)  (21) 

 𝑊𝑚
𝑖

𝑘+1|𝑘
= 𝑊𝑐

𝑖
𝑘+1|𝑘

=
1

2(𝑛+𝜆)
  (22) 

 𝜆 = 𝑎2(𝑛 + 𝜅) − 𝑛  (23) 

where 𝑊𝑚 is used to predict the measurement vector in the cor-
rection step and ∑ 𝑊𝑚 = 1, 𝑊𝑐 is used to calculate the covariance 
matrix in the correction step, 𝑏 is a parameter related to the dis-
tribution of the probability density function of the state vector 
(𝑏 = 2 for Gaussians), 𝜆 is a parameter that determines the 
spread of the SPs around the mean, the parameter 𝑘 ∈ [0, ∞) is 
usually set to zero, and the parameter 𝑎 ∈ (0,1] [11]. 

 Step 4: Correction (24) – (30). 

 The correction step of the algorithm is used to update the 
estimated states, measurements, and covariance matrices before 
they are used in the next iteration of the recursive process. 

 𝑦̂𝑘+1|𝑘 =  ∑ 𝑊𝑚
𝑖 ∙ ℎ(𝒳𝑖𝑘+1|𝑘

)2𝑛
𝑖=0   (24) 

 
𝑃𝑥𝑦𝑘+1|𝑘

=  ∑ 𝑊𝑐
𝑖 (𝒳𝑖 𝑘+1|𝑘

− 𝑥̂𝑘+1|𝑘) ∙2𝑛
𝑖=0

{ℎ (𝒳𝑖𝑘+1|𝑘
) − 𝑦̂𝑘+1|𝑘}

𝑇

  
(25) 

 
𝑃𝑦𝑦𝑘+1|𝑘

=  ∑ 𝑊𝑐
𝑖 (ℎ (𝒳𝑖 𝑘+1|𝑘

) − 𝑦̂𝑘+1|𝑘) ∙2𝑛
𝑖=0

{ℎ (𝒳𝑖𝑘+1|𝑘
) − 𝑦̂𝑘+1|𝑘}

𝑇

  
(26) 

 𝑆𝑘+1 = 𝑃𝑦𝑦𝑘+1|𝑘
+ 𝑅𝑘+1 (27) 

 𝐾𝑘+1 = 𝑃𝑥𝑦𝑘+1|𝑘
∙ 𝑆𝑘+1

−1  (28) 

 𝑥̂𝑘+1|𝑘+1 = 𝑥̂𝑘+1|𝑘 + 𝐾𝑘+1 ∙ (𝑦𝑘+1 − 𝑦̂𝑘+1|𝑘)  (29) 

 𝑃𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘 − 𝐾𝑘+1𝑆𝑘+1𝐾𝑘+1
𝑇  (30) 

where 𝑦̂ is the estimated measurement vector, 𝑃𝑥𝑦  and 𝑃𝑦𝑦 are 

covariance matrices, 𝑆 is the innovation covariance matrix, and 
𝐾 is the Kalman gain matrix. The UKF parameters, taken from 
[11], are shown in TABLE II. 

TABLE II.  UNSCENTED KALMAN FILTER PARAMETERS [11]. 

Parameter 𝒏 𝒂 𝒃 𝜿 𝝀 

Value 9 0.1 2 0 -8.91 

C. False Data Injection Attack Model 

The FDIA attack model from [18] was repeated to introduce 
bias attacks to the measurements of ATD battery stacks. 

 𝑦𝑎 = 𝑦 + Δ𝑦𝑎 (31) 

where Δ𝑦𝑎 is an attack vector, y is the measurement vector, and 
𝑦𝑎 is the manipulated measurement vector [18]. 

III. DETECTION OF FDIA IN STACKS USING CUSUM  

A. CUSUM Algorithm 

Variations of the CUSUM algorithm have been utilized for 
change detection [19], and it has been applied to detect FDIA in 
batteries without ambient temperature being taken into consid-
eration [18][20]. The methodology and equations for the 
CUSUM algorithm used in this paper can be found in [18]-[20], 
and the general process of the CUSUM algorithm can be sum-
marized in the form of a flowchart (Fig. 2.). Methods to calculate 
the CUSUM parameters (𝑘, ℎ, 𝑑, 𝛼, 𝛽, 𝛿, 𝑛𝑠𝑎𝑚𝑝, and 𝑛𝑠𝑎𝑚𝑝) are 

described in [20] and [21].  

The general process of the CUSUM algorithm is to calculate 
an upper (UCL) and lower (LCL) control limit, and then use a 
recursive high (SH) and low (SL) sum to determine if the system 
is in or out of control. An attack is present in the system if either 
the SH or SL exceeds the UCL or LCL, respectively [19]. It is 
not necessary for both sums to diverge to indicate an attack is 
present. As done in [18] and [20], the a priori measurement re-
sidual was used as the input data to the CUSUM algorithm. 



 𝑧[𝑘|𝑘 − 1] = 𝑦[𝑘] − 𝑦̂[𝑘|𝑘 − 1] (32) 

where z is the a priori measurement residual, y is the actual 
measurement (which may or may not be attacked), and 𝑦̂ is the 
estimated measurement which is generated by the UKF. 

 

Fig. 2. CUSUM algorithm flowchart for attack detection 

IV. CASE STUDY 

In this section the estimation accuracy of the UKF is com-
pared to the EKF for a stack of three ATD cells. For each test, 
the UKF and EKF were given the same ambient temperatures 
and internal battery parameters, the only difference between the 
tests being the estimator’s equations. Two metrics were used to 
assess the accuracy of the estimators: root mean squared error 
(RMSE) and maximum absolute error (MAE) of the state varia-
ble (𝑥̂𝑘|𝑘) and system output (𝑦̂𝑘) estimates.  

The detection capability of CUSUM algorithm at various 
fixed-ambient temperatures was evaluated by using the a priori 
residuals at random ambient temperatures. FDIAs targeted indi-
vidual cell voltage sensors and the stack voltage sensor. Due to 
the difficulty and expense associated with launching FDIAs, we 
assumed an attacker would target the minimum number of sen-
sors that result in inaccurate state estimation (in most cases one 
sensor was sufficient). Therefore, we assume single-sensor at-
tacks are more likely, but for completeness, attacks launched on 
multiple sensors were also tested. FDIAs were injected at ran-
dom attack times (ranging from 2000 s to 7000 s) and random 
fixed-ambient temperatures (ranging from -30℃ to 50℃) were 
used to generate ATD battery parameters. 

 

Fig. 3. Battery parameter vatiation with ambient temperature [10]. 

The batteries studied are LiFePO4 chemistry. The parame-
ters for Cell 1 were taken from [10]. The battery parameters for 
Cell 2 and Cell 3 were generated by adding noise to the param-
eters from Cell 1 based on the variation between cells’ parame-
ters in [4] and fitting a curve to the noisy data (Fig. 3.). The co-
efficients for each cell can be seen in TABLE IV [10]. 

TABLE III.  ATD BATTERY PARAMETER COEFFICIENTS [10]. 

 𝒑𝟎𝟑  𝒑𝟎𝟐 𝒑𝟎𝟏 𝒑𝟎𝟎 

𝐑𝟎,𝟏 6.8 ∙ 10−7 − 3.5 ∙ 10−5 −1.5 ∙ 10−3 0.214 

𝐑𝒑,𝟏  5.4 ∙ 10−8 −3.8 ∙ 10−6 −2.4 ∙ 10−4 0.03 

𝐂𝒑,𝟏 0.04 − 1.677 61.1 3100 

𝐑𝒏,𝟏  4.4 ∙ 10−7 − 2 ∙ 10−5 −1.5 ∙ 10−3 0.114 

𝐂𝒏,𝟏  8 ∙ 10−3 − 0.39 10.6 625 

𝐂𝐜𝐚𝐩,𝟏 0.012 − 1.4652 57.6 7200 

𝐑𝟎,𝟐  8.373 ∙ 10−7 − 4.057 ∙ 10−5 1.548 ∙ 10−3 0.2146 

𝐑𝒑,𝟐  7.461 ∙ 10−8 − 4.53 ∙ 10−6 −2.56 ∙ 10−4 0.03 

𝐂𝒑,𝟐 0.0397 − 1.682 60.9 3099 

𝐑𝒏,𝟐  4.654 ∙ 10−7 − 2.232 ∙ 10−5 −1.459 ∙ 10−3 0.1151 

𝐂𝒏,𝟐 8.17 ∙ 10−3 − 0.39 10.5 628 

𝐂𝐜𝐚𝐩,𝟐 0.0112 − 1.47 58.68 7198 

𝐑𝟎,𝟑  7.356 ∙ 10−7 − 3.565 ∙ 10−5 −1.604 ∙ 10−3 0.2146 

𝐑𝒑,𝟑  4.779 ∙ 10−8 − 3.639 ∙ 10−6 2.301 ∙ 10−4 0.02986 

𝐂𝒑,𝟑 0.03483 − 1.59 64.83 3066 

𝐑𝒏,𝟑  5.116 ∙ 10−7 − 2.346 ∙ 10−5 −1.574 ∙ 10−3 0.1169 

𝐂𝒏,𝟑 8.04 ∙ 10−3 − 0.39 10.6 626 

𝐂𝐜𝐚𝐩,𝟑 0.01435 − 1.489 54.69 7192 

V. RESULTS 

The UKF outperformed the EKF in terms of RMSE and 
MAE at all ambient temperatures studied. The error study was 
conducted for each state variable and each measurement, by us-
ing the residual value between the actual and estimated state or 
measurement. The UKF was found to estimate each individual 
state and measurement more accurately than the EKF. TABLE 
V presents the results of the error studies for each estimator, with 
subscripts E and U referring to the results of the EKF and UKF, 
respectively. To make the table readable, the value in each col-
umn is the sum of the individual errors for the estimated states 
and measurements. So, the 𝑅𝑀𝑆𝐸𝐸 at 10℃ is the sum of the 
RMSE of each state and measurement for the EKF at 10℃. 



The CUSUM algorithm was able to detect FDIA magnitudes 
as low as ±1 mV on voltage sensors, for random injection times 
and random ambient temperatures. Fig. 4 is an example of the 
CUSUM chart, which clearly diverges in the presence of an 
FDIA. Ambient temperatures tested, between -10℃ and 50℃ 
(and associated battery parameters), did not appear to have an 
impact on the accuracy of the CUSUM algorithm. Although the 
likelihood of a multi-sensor attack is lower than a single-sensor 
attack, the CUSUM algorithm functioned when multiple sensors 
were attacked but did not accurately indicate the sensor(s) at-
tacked. The CUSUM did not trigger a false alarm at any of the 
ambient temperatures tested when there was no injected attack. 

TABLE IV.  EKF AND UKF ERROR RESULTS. 

T (℃) 𝑹𝑴𝑺𝑬𝑬 𝑹𝑴𝑺𝑬𝑼 𝑴𝑨𝑬𝑬 𝑴𝑨𝑬𝑼 

-10 0.0936 0.0485 0.0675 0.0295 

0 0.0964 0.0545 0.0713 0.0360 

10 0.0931 0.0545 0.0686 0.0364 

20 0.0892 0.0539 0.0651 0.0358 

30 0.0859 0.0536 0.0620 0.0354 

40 0.0836 0.0540 0.0609 0.0355 

50 0.0835 0.0562 0.0623 0.0377 

 

Fig. 4. CUSUM charts for a 1 mV attack in 𝑣𝑇𝑂𝑉1
 sensor at 6529 s and 39℃. 

VI. SUMMARY AND CONCLUSIONS 

This paper extends the work in [18] to include an ATD bat-
tery model [10] and improves state and measurement estimation 
by using the UKF. The UKF estimator was found to be more 
accurate than the EKF when evaluated using RMSE and MAE. 
The CUSUM algorithm was able to detect FDIAs with magni-
tudes of at least ±1 𝑚𝑉, in all voltage sensors (including multi-
ple voltage sensors at a time) under varying ambient tempera-
tures and random attack injection times. 
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