This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in

the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Detection of False Data Injection Attacks in Ambient
Temperature-Dependent Battery Stacks

Victoria Obrien
Electrical Engineering Department
Texas Tech University
Lubbock, TX, USA
victoria.obrien@ttu.edu

Abstract— The state of charge (SoC) estimated by Battery
Management Systems (BMSs) could be vulnerable to False Data
Injection Attacks (FDIAs), which aim to disturb state estimation.
Inaccurate SoC estimation, due to attacks or suboptimal estima-
tors, could lead to thermal runaway, accelerated degradation of
batteries, and other undesirable events. In this paper, an ambient
temperature-dependent model is adopted to represent the physics
of a stack of three series-connected battery cells, and an Unscented
Kalman Filter (UKF) is utilized to estimate the SoC for each cell.
A Cumulative Sum (CUSUM) algorithm is used to detect FDIAs
targeting the voltage sensors in the battery stack. The UKF was
more accurate in state and measurement estimation than the Ex-
tended Kalman Filter (EKF) for Maximum Absolute Error (MAE)
and Root Mean Squared Error (RMSE). The CUSUM algorithm
described in this paper was able to detect attacks as low as +1 mV
when one or more voltage sensor was attacked under various am-
bient temperatures and attack injection times.

Keywords— ambient temperature, anomaly detection, cumula-
tive sum, false data injection attacks, smart grid.

I. INTRODUCTION

Cyberattacks on power grids and other cyber-physical
systems (CPS) around the world have caused blackouts and
other undesirable consequences. Notable examples of cyberat-
tacks were the 2015 cyberattack on Ukraine’s power grid and
the 2010 discovery of the Stuxnet worm that was found in
Iranian Industrial plants [1]. The discovery of these attacks and
their consequences demonstrated the importance of
implementing defenses to cyber threats targeting the smart grid.

Energy storage systems (ESSs) are connected to the smart
grid to help keep up with energy demands and to integrate re-
newable generation sources. Battery ESS (BESS) have recently
become popular due to their increased efficiency and reduced
cost [2]. Lithium-ion (Li-ion) batteries are the most used BESS
technology [3] because of their relatively low-cost, high-energy
density, high power density, and long lifespan [3], [4].
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Battery cells require a battery management system (BMS) to
monitor sensor readings (typically current, voltage, and temper-
ature), to balance cells, to ensure that batteries operate within
their safety limits, and to estimate battery states like the state of
charge (SoC) [5]. SoC is the ratio of available charge in a battery
relative to the total capacity of the battery and it cannot be meas-
ured directly. Accurate SoC estimation is crucial for safe opera-
tion of the battery, including its charge and discharge cycles [6].
Errors in SoC estimation in grid-scale BESS could result in ther-
mal runaway events (overheating, fires, or explosions), the deg-
radation and reduced lifetime of batteries, increased costs to re-
place damaged equipment, or decreased reliability of systems
(including blackouts) [5] - [8].

Variations of the Kalman Filter (KF), like the Extended KF
(EKF) and the Unscented KF (UKF), can be used as estimators
in nonlinear systems like battery cells. The EKF works well for
systems that can be represented by a linear approximation but
performs sub-optimally in systems with extreme nonlinearities
[9]. The UKF works well under any nonlinearity and uses a col-
lection of Sigma Points (SPs) to represent the probability distri-
bution of the nonlinear function. Theoretically, the UKF can
provide more accurate state estimation than the EKF [5]. EKFs
have been used to estimate battery states in electric vehicle bat-
teries [4], and in temperature-dependent Li-ion battery applica-
tions [10]. UKFs have been studied for nonlinear estimation in
[9] and have also been used in power battery applications [6] and
in personal navigation [11]. In this paper a UKF is implemented
to estimate the states of a stack of three batteries whose internal
parameters are dependent on the ambient temperature. Some
simplified equivalent circuit models (ECMs) used to represent
battery dynamics do not include the effects of cell or ambient
temperature [4]. Papers such as [12] and [10] assert that battery
parameters are ambient temperature-dependent (ATD).

False Data Injection Attacks (FDIAs) are cyberattacks that
alter measurements in a CPS before they are used in state esti-
mation, to cause inaccurate estimation [13]. FDIAs are typically
designed by attackers who have knowledge of the system con-
figuration, parameters, or state matrices [13]. In literature,
FDIAs have been detected using statistical methods like the chi-
squared test [14] and variations of the CUSUM algorithm [15],
[16], or with data driven methods [17]. Previously published
work [18] applied the CUSUM to FDIA detection in battery
stacks but used an EKF for SoC estimation considering constant
temperature battery stack models.
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In this paper, we extend [18] to increase the accuracy of SoC
estimation and FDIA detection. The contribution of this paper is
to use the CUSUM algorithm to detect FDIA in the voltage sen-
sors of the ATD model proposed in [10] under various ambient
temperatures. Additionally, a UKF replaces the EKF used in
[10] to estimate more accurately the SoC of each battery cell.

The remainder of this paper is organized as follows. Section
II describes the ATD ECM for a stack of series-connected bat-
teries and presents the UKF algorithm and the FDIA model. Sec-
tion III describes the CUSUM algorithm taken from [18]-[21].
Section IV demonstrates the effectiveness of the CUSUM algo-
rithm by testing the UKF and CUSUM algorithm at a variety of
ambient temperatures, the results of which are presented in Sec-
tion V. Section VI concludes this paper.

II. SOC ESTIMATION FOR ATD BATTERY STACKS

A. ATD ECM

The ATD ECM for the j* cell in a series connected stack of
N batteries was adopted from [10] (Fig. 1.). Like the study in
[18], three series-connected battery cells were studied.
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Fig. 1. ATD ECM for the j* cell in a series-connected stack of N batteries [10].
* indicates the element is ATD and 1 indicates the element is SoC-dependent.

Continuous general governing equations (1) — (9) for the j"
cell in the battery stack can be derived from Fig. 1 [10].
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where T is the ambient temperature, iy, is the current through
the battery stack, V.41 1S the battery stack’s voltage, i, = 0
and iy < 0 are the charge and discharge current, respectively.
The remainder of the parameters varied from cell to cell and the
subscript ; indicates a parameter is for the j™ battery cell.
Where R, ; is the battery ohmic resistance, ¢; is the SoC, V,, ; is
the open circuit voltage, Vroy j is the voltage drop across the
cell, Vr¢y,j is the temperature compensation voltage, Vy ; is the
static hysteresis voltage, as described in [10].

Coefficients for each cell are listed in TABLE I, where the
coefficients for Cell 1 were taken from [10]. The remaining co-
efficients for Cell 2 and Cell 3 were determined by adding a
small random value to the coefficients from [10] and fitting a
curve to the data.

TABLE L. BATTERY MODEL VOLTAGE COEFFICIENTS [10].
P3o P21 P20 P11 P1o Po2 Po1 Poo
(10%) 103 | (10%) | (10%) | (10

Voc1 | 136 -5 |-1917 7 8.79 - -2 3.149
Vist - - - - —7.55 - - 0.0755
Vieva | - - - - - —-9.2 | 1.2 | -0.097
Vocz | 137 -5 [-1921| 7.1 | 8.867 - -2 3.149
Vis2 - - - - -1.27 - - 0.07353
Vricve - - - - - -9.98 | 1.242 | -0.0964
Voes | 137 -5 [-1.923 | 7.06 | 9.02 - -2 3.149
Vis3 - - - - -7.869 - - 0.077
Vicys - - - - -10.75 | 1.188 | -0.0953

General polynomial equations to find the ATD internal bat-
tery parameters (10) were adopted from [10]. The list of ATD
internal battery coefficients is presented in TABLE II.

Ppj = po3T? + po2T? + porT + Poo (10)

where py; is a coefficient in the SoC and T dependent equations,
k corresponds to the order of the SoC and [ corresponds to the
order of T. The polynomial P,; could represent
Ry i Ry, Cpjs Cy jy OF Cegp j, Which are resistor and capacitor
values for the series and parallel RC pairs (Fig. 1.) and C,q, ; is
the capacity of the battery.

B. Unscented Kalman Filter

The UKF is used to estimate system states for an ATD bat-
tery stack model, due to the nonlinearity in the output equation
of the model. The state transition function (11) and output func-
tion (12) are influenced by process and measurement noise, re-
spectively.

Xis1 = f (g, Ugy Wi) (11)

Vi = g(xp, Uy, k) (12)

where x; is a vector of state variables: the SoC (¢;) € [0,1], and
the voltage drops across the parallel (V, ;) and series (V;, ;) RC
pairs, uy is a vector of system inputs: i, and i 4, Yy is the system



outputs: the cell voltages (Vrgy ;) and Vseqer. The noise
(Wi~ N(0,Q) and e,~N(0,R)) are assumed to be additive
Gaussian noise.

The UKF uses a collection of SPs to represent the probability
density of the nonlinear measurement equation. The state equa-
tion is linear in this case, so states are predicted using the same
technique as the traditional KF. The UKF follows four main
steps: initialization (performed once), prediction of states, cal-
culation of SP and weights, and correction/update, the latter
three are performed recursively to estimate states over time [11].

Step 1: Initialization (13) — (14).
J/C\0|0 = E[x,] (13)
P ojo = Py (14)
where P, is the initial covariance and x, is the initial state.
Step 2: Prediction of States (15) — (16).

This step is done with the same method as the traditional KF
since the nonlinearity only affects the output equation.

Rk = AXy + By (15)
Peyije = AP AT + Qp (16)
Step 3: Generate the SPs and associated weights (17) — (23).

There are (2n+1) SPs used to represent the probability den-
sity of the nonlinear function, n is the number of states. The SPs
(17) — (19) are centered around the mean of the function.

x0k+1|k = £k+1|k (17)

Kirrrpe = Fierrpe + ( /(n + A)Pk+1|k)_ (18)
L
Xitngrape = Xk = ( ’(n + A)Pk+1|k)' (19)
L

where X is the estimated state vector, P is the covariance matrix,
X is the SP matrix with dimensionsn X (2n + 1), 1 is a scaling
parameter, and i = 1, ..., 2n. The portion under the radical is a
positive-definite matrix that is calculated using Cholesky de-
composition for the lower triangle, as done in [11]. The weights
for each sigma point are also calculated (20) — (23).
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where W, is used to predict the measurement vector in the cor-
rection step and Y, W, = 1, W, is used to calculate the covariance
matrix in the correction step, b is a parameter related to the dis-
tribution of the probability density function of the state vector
(b = 2 for Gaussians), 1 is a parameter that determines the
spread of the SPs around the mean, the parameter k € [0, o) is
usually set to zero, and the parameter a € (0,1] [11].

Step 4: Correction (24) — (30).

The correction step of the algorithm is used to update the
estimated states, measurements, and covariance matrices before
they are used in the next iteration of the recursive process.

2o Win = B(Xiy130) (24)
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where ¥ is the estimated measurement vector, P, and P, are
covariance matrices, S is the innovation covariance matrix, and
K is the Kalman gain matrix. The UKF parameters, taken from
[11], are shown in TABLE II.

TABLE I UNSCENTED KALMAN FILTER PARAMETERS [11].
Parameter n a b K A
Value 9 0.1 2 0 -8.91

C. False Data Injection Attack Model

The FDIA attack model from [18] was repeated to introduce
bias attacks to the measurements of ATD battery stacks.

Yo =Y+ Ay, (1)

where Ay, is an attack vector, y is the measurement vector, and
Y, is the manipulated measurement vector [18].

III. DETECTION OF FDIA IN STACKS USING CUSUM

A. CUSUM Algorithm

Variations of the CUSUM algorithm have been utilized for
change detection [19], and it has been applied to detect FDIA in
batteries without ambient temperature being taken into consid-
eration [18][20]. The methodology and equations for the
CUSUM algorithm used in this paper can be found in [18]-[20],
and the general process of the CUSUM algorithm can be sum-
marized in the form of a flowchart (Fig. 2.). Methods to calculate
the CUSUM parameters (k, h, d, a, B, 8, Nggmp, and Nggpmy, ) are
described in [20] and [21].

The general process of the CUSUM algorithm is to calculate
an upper (UCL) and lower (LCL) control limit, and then use a
recursive high (SH) and low (SL) sum to determine if the system
is in or out of control. An attack is present in the system if either
the SH or SL exceeds the UCL or LCL, respectively [19]. It is
not necessary for both sums to diverge to indicate an attack is
present. As done in [18] and [20], the a priori measurement re-
sidual was used as the input data to the CUSUM algorithm.



z[k|k = 1] = y[k] = y[k|k — 1] (32)

where z is the a priori measurement residual, y is the actual
measurement (which may or may not be attacked), and ¥ is the
estimated measurement which is generated by the UKF.

[ Define Parameters J ‘ Preprocess Data

Divide data into samples

Determine population
mean and SD

Lower Control Limit

Upper Control Limit

Initialize SH = 0 Initialize SL = 0

Recursion
Begins

Calculate Low
Cumulative Sum (SL)

Calculate High
Cumulative Sum (SH)

Attack
Detected

Fig. 2. CUSUM algorithm flowchart for attack detection

IV. CASE STUDY

In this section the estimation accuracy of the UKF is com-
pared to the EKF for a stack of three ATD cells. For each test,
the UKF and EKF were given the same ambient temperatures
and internal battery parameters, the only difference between the
tests being the estimator’s equations. Two metrics were used to
assess the accuracy of the estimators: root mean squared error
(RMSE) and maximum absolute error (MAE) of the state varia-
ble (%4 ,) and system output (¥) estimates.

The detection capability of CUSUM algorithm at various
fixed-ambient temperatures was evaluated by using the a priori
residuals at random ambient temperatures. FDIAs targeted indi-
vidual cell voltage sensors and the stack voltage sensor. Due to
the difficulty and expense associated with launching FDIAs, we
assumed an attacker would target the minimum number of sen-
sors that result in inaccurate state estimation (in most cases one
sensor was sufficient). Therefore, we assume single-sensor at-
tacks are more likely, but for completeness, attacks launched on
multiple sensors were also tested. FDIAs were injected at ran-
dom attack times (ranging from 2000 s to 7000 s) and random
fixed-ambient temperatures (ranging from -30°C to 50°C) were
used to generate ATD battery parameters.
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Fig. 3. Battery parameter vatiation with ambient temperature [10].

The batteries studied are LiFePO, chemistry. The parame-
ters for Cell 1 were taken from [10]. The battery parameters for
Cell 2 and Cell 3 were generated by adding noise to the param-
eters from Cell 1 based on the variation between cells’ parame-
ters in [4] and fitting a curve to the noisy data (Fig. 3.). The co-
efficients for each cell can be seen in TABLE 1V [10].

TABLE IIL ATD BATTERY PARAMETER COEFFICIENTS [10].
Po3 Poz Po1 Poo
Ro1 6.8-1077 —35-107° -1.5-107% 0.214
Ry1 5.4-1078 —3.8-107¢ —2.4-107* 0.03
Co1 0.04 - 1.677 61.1 3100
R,1 4.4-1077 —2-107° —1.5-1073 0.114
Ch1 8-1073 - 0.39 10.6 625
Ceap,1 0.012 — 1.4652 57.6 7200
Ry 8.373-1077 —4.057-107° 1.548-1073 0.2146
R,2 | 7461-107® | —4.53-107° -2.56-107* 0.03
Cy2 0.0397 —1.682 60.9 3099
R, 4.654-1077 —2.232-1075 —1.459-1073 0.1151
C,2 8.17-1073 —0.39 10.5 628
| Ceap2 0.0112 - 1.47 58.68 7198
Ro3 7.356-1077 —3.565-1075 —1.604-1073 0.2146
R,3 4.779-1078 —3.639-107° 2.301-107* 0.02986
Cys3 0.03483 - 1.59 64.83 3066
R,3 5.116-1077 | —2.346-107 | —1.574-10"% | 0.1169
C.3 8.04-1073 —0.39 10.6 626
Ceap3 0.01435 —1.489 54.69 7192
V. RESULTS

The UKF outperformed the EKF in terms of RMSE and
MAE at all ambient temperatures studied. The error study was
conducted for each state variable and each measurement, by us-
ing the residual value between the actual and estimated state or
measurement. The UKF was found to estimate each individual
state and measurement more accurately than the EKF. TABLE
V presents the results of the error studies for each estimator, with
subscripts E and U referring to the results of the EKF and UKF,
respectively. To make the table readable, the value in each col-
umn is the sum of the individual errors for the estimated states
and measurements. So, the RMSE; at 10°C is the sum of the
RMSE of each state and measurement for the EKF at 10°C.



The CUSUM algorithm was able to detect FDIA magnitudes
as low as £1 mV on voltage sensors, for random injection times
and random ambient temperatures. Fig. 4 is an example of the
CUSUM chart, which clearly diverges in the presence of an
FDIA. Ambient temperatures tested, between -10°C and 50°C
(and associated battery parameters), did not appear to have an
impact on the accuracy of the CUSUM algorithm. Although the
likelihood of a multi-sensor attack is lower than a single-sensor
attack, the CUSUM algorithm functioned when multiple sensors
were attacked but did not accurately indicate the sensor(s) at-
tacked. The CUSUM did not trigger a false alarm at any of the
ambient temperatures tested when there was no injected attack.

TABLEIV. EKF AND UKF ERROR RESULTS.
T (°C) RMSE, RMSE,, MAE, MAE,
-10 0.0936 0.0485 0.0675 0.0295
0 0.0964 0.0545 0.0713 0.0360
10 0.0931 0.0545 0.0686 0.0364
20 0.0892 0.0539 0.0651 0.0358
30 0.0859 0.0536 0.0620 0.0354
40 0.0836 0.0540 0.0609 0.0355
50 0.0835 0.0562 0.0623 0.0377
— SH sL
CUSUM Charts oL oL
Vrov, Vrov,
0.04 0.03
g E
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= 002 2
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Fig. 4. CUSUM charts for a 1 mV attack in vyqy, sensor at 6529 s and 39°C.

VI. SUMMARY AND CONCLUSIONS

This paper extends the work in [18] to include an ATD bat-
tery model [10] and improves state and measurement estimation
by using the UKF. The UKF estimator was found to be more
accurate than the EKF when evaluated using RMSE and MAE.
The CUSUM algorithm was able to detect FDIAs with magni-
tudes of at least £1 mV, in all voltage sensors (including multi-
ple voltage sensors at a time) under varying ambient tempera-
tures and random attack injection times.
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