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Sensing is a parameter estimation
• Error sources

• Various classical errors (1/f, thermal/mechanical noises, etc.)
• Measurement back-action

• The interaction incurs some changes to the physical object/property.
• Tool’s precision limits the accuracy of detection.

• One (typical) mitigation
• Parameter estimation based on ensemble measurement
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Reducing sensing errors via averaging
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Paradigm of quantum sensing
• First, remove (reduce significantly) all reducible errors.

• Even if all classical error sources are suppressed, quantum errors stay.

• Implement an appropriate sensing interaction scheme.
• Reduce the interaction-induced back action

• Check if the interaction is compatible (commuting) with Hamiltonian
• Search for best measurement scheme

• To maximize obtainable information amount

• Fight to reduce the remaining quantum errors
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Be careful when claiming advantage of quantum sensing

• We learned that the estimate error can be arbitrarily small via increasing the resources (N: number 
of photons).

• Quantum sensing claims a favorable scaling rule between accuracy and number of resources.
• Quantum sensing must answer why one cannot simply increase N to reduce the error. 

• Typical situations where increasing N is not plausible:
• Worried about the back action from large optical powers.
• Higher optical power may saturate the optical detector.
• Intense light may harm photosensitive ligands.
• High power probe light may damage benign (bio) samples. 
• Driving lasers for high powers may increase classical noises (1/f, thermal). 
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Light is a harmonic oscillator
• Hamiltonian

• Coherent state

• Uncertainty principle

6



Squeezed light
• Squeezing operator
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Experimental setup for squeezed light production
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Limitations in classical imaging

• Rayleigh diffraction limit

• Various methods to improve the classical imaging resolution
• Best-form lenses
• Immersive optics
• Current practical limit of imaging resolution > 200 nm if 1 µm light wavelength is 

used.
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Super-resolution imaging
• Light is noisy

• Reconstructing imaging
• Due to limited lens aperture sizes, high-order Fourier components are lost 

(Rayleigh diffraction limit).
• It is in principle possible to retrieve the lost information using accurate 

information within pupil and extrapolate it (c.f. analytical).
• It takes long time (or large number of photons) to obtain sufficiently accurate 

information within pupil after averaging. 
• Squeezed-state of light reduces the time/number-of-photons.
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Coherent-state Squeezed-state

[Kolobov & Fabre, PRL 85, 3789 (2000)]



Formalism of super-resolution imaging
• Goal: reconstruct the original object after retrieving the missing information.
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[Kolobov & Fabre, PRL 85, 2000]



Formalism of super-resolution imaging
• Goal: reconstruct the original object after retrieving the missing information.

• Reconstruction of object from image measurements:
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Result: Quantum vs. Classical super-resolution imaging
• Comparison of quantum and classical imaging on a fictitious 1D sample with varying optical phase 

(same number of photons)
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[Soh, “Label-free quantum super-resolution imaging…”, arXiv 2207.10826 (2022)] 

(s’=1 corresponds to 150 nm)

• # of photons used:50x50000
• Wavelength: 780nm
• Quantum img resol: 40 nm
• Classical img resol: ~200 nm



Applications of super-resolution imaging
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 Requirements: 780 nm, ~ 20 nm resolution, 5x109 
photons (1 nJ), limited by operating time.

 Squeezing level: 10 dB, expected optical loss: 3 dB

Nanoscale imaging

 Requirements: 1064 nm, ~ 40 nm resolution, 5x106 
photons (1 pJ), limited by protection need for chip 
function

 Squeezing level: 10 dB, expected optical loss: 1 dB

Remote sensing

MEMSL Target

 Requirements: 1064 nm, XX photons, limited by 
operating power

 Squeezing level: 10 dB, expected optical loss: ~ 10 dB


