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Objective: Understand the role of various additives on the cycling performance of calcium zincate anodes at hlgh utilization of the zinc.
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* Zinc chemistry provides a high theoretical capacity, relative abundance, non-toxic, and non-flammable
nature which make them inherently safer for energy storage

* Failure mechanisms of zinc batteries include passivation, shape change/redistribution, dendrite formation,
hydrogen evolution, and the crossover of zincate (Zn(OH),?") into the cathode

* Preliminary results indicate that anodes containing calcium zincate may mitigate some of these problems
due to 1ts low solubility in KOH electrolyte

* On charge the reaction product Ca(OH), readily compounds with zincate ions to keep zincate
concentrations low 1n the porous electrode material.
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, Zn(OH)42 + Ca(oH)2 + 2H 0= CaZn,(OH), -2H,0 + 40H"
Charge —

CaZn,(OH), -2H,O +4e~ = Ca(OH), +2Zn +40H™ +2H,0
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Rough Estimate on Raw Materials Cost at Scale* Electrode Mixture Composmon and Propertles

Metallic | Zinc Oxide Calcium Bismuth Carbon Calcium PTFE 25% Potassium
Zinc (Zn) | (ZnO) | Zincate Rough | Oxide (Bi,03) Hydroxide Dispersion Hydroxide - -
Ske) | (kg | Estmate kg (kg OO | (CaOH)) (Skg)| Teflon (Skg) | (KOH) (kg Material 2723% VOli?epEff Zn
S 3 3.2 10 3 0.3 7 1.2 .
Metallic Znc 7133 : Cell#1  Cell#2  Cell#3  Cell#4
. . — . e ¢ ¢ e
Scaled Up Sharma Calcium Zincate Standard RT Recipe Zi0e Oxide 561 197
Zn0 (kg) Ca(OH)2 (kg) 20% KOH (kg) | DI Water (L) | Calcium Zincate (kg)
ke/L 3 10 100 14.6 15 Calcium Zincate 2.59 2.75
$ 69 3 11.35 14.6 3.2
* Raw material cost information was all obtained publicly from multiple vendors on www.Alibaba.com. Calcium DESlgn of EXpel‘lmentS 2x3in AnOde VS SlNl Fabrlcatlon

zincate price estimated assuming 20% KOH can be recycled at 90% of the fresh KOH cost, DI water treatment
cost $0.5/L, additional cost of factory labor, energy, and equipment is 15% on top of the total materials cost
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Total | Active Anode .| Calcium | 10 wt.% | 4 wt.% | moles | g of . Rough Cost (or —i== -:,-_--__-;-_-.r..:_f_-;,a:,-_-.-s.?_ >
: ... . | Cell| Metallic| . : : % of Zinc =075 7= = oV,
mass | material | Composition in 4 | Zinc (g) Zincate | Bi2O3 | PTFE | of | zinc Utilization of Anode 5 I.«.- ON O ’~ CE4: B6o% Cald . o d
(2) (2) wt.% (2) (2) (g) | Zinc | total ($/ke) g . ——CE2: 26%Zn 60% Calcium Zincate = — CE4: 86 % Calcium Zincate 10% Carbon
05 —EE2: 26%7n 60% Calcium Zincate --EE4: 86% Calcium Zincate 10% Carbon
Zinc Anode 96%
9.5 | 9.03 0 9.03 0.00 0.00 0.36 | 0.14 | 9.03 | 50.0% 47.65 0.25
/n
| |
10.5| 9.03 | Daselnes0% 11 903 | 000 | 1.05 | 042 | 0.14 | 9.03 | 50.0% 58.59 K : . I 0 I 0w o
) ) Zinc + 10% B1203 } ) ) } ) } 70 . Cycle Number
60% Zn + 26% Cal : 64.98 Preliminary Conclusions/ Future Directions
12.7] 1092 | . 0% Bpos | L 7.62 3.30 1.21 048 | 0.149.02 | 50.0% | . ‘° . . . . . T o . .
e ° Bl ) *  Various formulations of Calcium Zincate can be cycled with high 50% utilization of the active zinc
. . . . . 0 . .
176 15.14 226‘ %o in;(r) (30 g ((:)al > | 458 10.56 167 067 | 0.14 | 9.05 | 50.0% 79.39 material for more than 129+ ongoing cycles wath greater than 80% capacity reten.ﬁon |
e 0 BILR (1.4 x Baseline)  Understand the key factors during battery cycling at the nanoscale that led to the improved material
0 i tilization at high cycle life compared to metallic zin
248 2133 | ORIRLICT 31 000 | 2133 | 236 | 0.94 | 0.14 | 9.03  50.0% 100.38 utihization at high cycle life compared to metallic zinc g | |
/o B1203 (1.7 x Baseline) * Investigate hydrogen evolution reaction (HER) and possible additives to reduce zinc anode gassing
A '  Investigate calcium zincate anodes vs manganese dioxide (Zn-MnQO,) cells
248 | 2133 | SOmGalZnCt g 00 | 2133 | 236 | 094 | 0.14 | 9.03 | 50.0% 83.02 S S ( )
10% Carbon (1.4 x Baseline)
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