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Introduction \

BATTERY MODULE

* Battery Energy Storage Systems
(BESSs)
* Current

* Batteries are connected to meet -
voltage, current, and power
requirements

 BESS employ a battery
management system (BMS)

* State variable estimation and « Protecting and
sensor measurements may be Balancing

susceptible to cyber attacks

Sensing
* Voltage

* Increased need for grid-scale
energy storage systems . e

Parameter

Estimation

* SoC
* SoH

Figure 1. BMS functions
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Problem Formulation

Goal: to increase battery cells’ SoC estimation accuracy by incorporating ambient
temperature dependent (ATD) models and by utilizing an Unscented Kalman Filter
(UKF), then to detect FDIAs in voltage sensors under various attack scenarios
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Estimatar
Attack (UKF)
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Manipulated
Measurements :
. . Predicted
Combination FDIA Measurements &
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Time States

s of Each
Scenario
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—Stack Voltage Sensor
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Cell | '5";?30‘? A prior
measuremement

residual

Attack Scenario
Variations

Number of
Sensors
Attacked

Ambient
Temperature

Data preprocessing

CellN
Ce" N Voltage
Sensor

CUSUM

—Stack Current Sensor
Algorithm

Targeted
Voltage
Sensor

Figure 3. General process of SoC estimation and _
FDIA detection EEEqT,'
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Figure 2. Tested Attack Scenario Variations




False Data Injection Attacks (FDIAs)\

1.2

| 9IEEE

— Actual SoC
——— Predicted SoC
Aftack Injected | ]

* Possible Consequences: 1
* Power outages 08l
« Damage to equipment/ battery degradation

06

* Thermal runaway events Q
afug ® w
* |ncreased costs for utilities and consumers 041
0.2+
* Bias attack: o
ya = y + ﬁyﬂ -0.20 10I00 20I00 30I00 40I00 50I00 GOIOO YOIOO 80I00 9000
* Ay, is the attack vector Time (s)

* Yy is the measurement vector

+ y, is the manipulated measurement vector Figure 4. Cell 1 SoC when a 100 mV FDIA is Injected
a

to the vyoy 1 Measurementat 5500 s
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Modeling Battery Dynamics \
N

A

TD Equivalent circuit model (ECM): tate of Charge (SoC):
* Used to model dynamics of series- * Available capacity relative to total capacity
connected stacks of three batteries * Described by charge reservoir model (CRM)
v +
| Cnj
*VVHF | . C D nejic
, & Cap’]._, C_(J‘
/——\
]
L : :
<—dC - C] CcaPJJ
MsjSi N\~

\Figure 5. ECM for the jt Cell in a Stack of N Batteries/ \Figure 6. CRM for the jt Cell in a Stack of N Batteries/




Ambient Temperature Dependence

* Internal battery parameters vary with ambient temperature

* The battery parameters for Cell 2 and Cell 3 were generated by adding a
random value to the parameters from Cell 1 (based on the variation between
cells’ parameters in [4]) and fitting a curve to the data
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Figure 7. Internal battery parameter variation with ambient temperature [10]




4 IEEE

(s
Unscented Kalman Filter \ &=

Typically more accurate for state estimation of nonlinear systems
compared to the Extended Kalman Filter (EKF)

Uses sigma points to represent the probability distribution of the
nonlinear function

Initialization Prediction of States Generation of Sigma Correction
Points and Weights

Recursion

Figure 8. General steps of the UKF estimator




CUSUM Algorithm

[ Define Parameters ] Preprocess Data

Divide data into samples

+|Determine population
"1 meanan d SD

Calculate Bound

Upper Control Limit Lower Control Limit
Initialize SH=0 Initialize SL =0

Calculate High
Cumulative Sum (SH)

Calculate Low
Cumulative Sum (SL)

Figure 9. CUSUM Algorithm Flowchart
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Uses a priori residual with p = 0:
2lklk — 1] = y[k] — P[k|k — 1]
Population Standard Deviation:

As§
=3

Upper / Lower Control Limit:
UCL = ho,, LCL = —hao,
High and Low CUSUM:
SH; =max(0,z;, —u—ko, +SH;_,)
SL; = min(0,Z; — u + ko, + SL;_4)
Determine presence of attack:

SH; > UCLor SL; < LCL - attack present
SH; < UCL and SL; = LCL — no attack

n, TX. November
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Case Study 1: Estimation Accuracy \ -

4 IEEE

* Goal: Compare the estimation accuracy of the UKF vs. the EKF

* In terms of state and measurement estimation
* Metrics: Maximum Absolute Error (MAE) and Root Mean Squared Error (RMSE)

UKF Estimator I Estimate States and ‘L
Measurements
MAE MAE |,
> —>
RMSE RMSE,
Simulate "Actual” Generate "Actual”
Battery Model > States and
& Measurements
MAE MAEg
> —>
RMSE RMSEg
EKF Estimator S Estimate States and T
Measurements

Figure 11. Estimation Accuracy Flowchart
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Estimation Accuracy Results \ .

*  UKF vs. EKF error at various ambient temperatures  -10 0.0675 0.0295
*  Maximum Absolute Error (MAE): 0 U7 0.0360
& 10 0.0686 0.0364

MAE = —Z| . — 9| 20 0.0651 0.0358

N & ity 30 0.0620 0.0354

40 0.0609 0.0355

* Root Mean Squared Error (RMSE): >0 Dz 0.0377
1 2 -10 0.0936 0.0485

RMSE = NZ(Y:‘ - 9) 0 0.0964 0.0545

N 10 0.0931 0.0545

* UKF was more accurate estimating states and 20 0.0892 0.0539
measurements in all cases compared to EKF 30 0.0859 D0sE

40 0.0836 0.0540

50 0.0835 0.0562

e ST
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Case Study 2: CUSUM Detection \ =

* Goals:
* Determine the magnitude of the minimum detectable attack
e Determine if CUSUM could detect attacks under each attack scenario variation
* Minimize false positives

Attack
Magnitude

Combination
s of Each
Scenario

Injection
Time

Attack Scenario
Variations

Number of
Sensors
Attacked

Ambient
Temperature

Targeted
Voltage
Sensor

Figure 2. Tested Attack Scenario Variations
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CUSUM Detection Results

CUSUM Charts -

A

VTO\f' Tov,
0.04 0.03
E E
@ 0.03 @
E g 0.02
£ 0.02 -
35 = 0.01
E 0.01 E
=3 3
O O
0 0
0 5 10 0 5 10
Time (s) % 10% Time (s) «10%
v
TOV v
tack
0.03 0 S
E E
@ @
o 0.02 o 0.2
= =
© ©
> 0.01 =
£ £ 0.4
jm | |
O O
0 06
0 5 10 0 5 10
Time (s) % 10% Time (s) «10%

Figure 12. CUSUM Charts for a 1 mV Attack Injected to
the vrop, Sensorata 6529 s and 39°C
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e Attacks 1 M or greater were able

to be detected
 Parameters that did not appear to
have an impact on detectability:

* Ambient temperature

e Attack injection time

* Targeted sensor

* Number of sensors targeted

* No false positives
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Conclusions e

* The UKF was more accurate in estimating states and measurements in all cases
compared to the EKF in terms of RMSE and MAE

 Attacks of £1 M or greater in voltage sensor(s) were able to be detected by
the CUSUM algorithm

* The varying attack scenarios did not appear to have an impact on the CUSUM'’s
ability to detect FDIAs

* The CUSUM algorithm did not have any false positives when using the UKF or
EKF




4 IEEE

@Es
Acknowledgements \ e

The authors would like to thank Dr. Imre Gyuk, Director of the Energy
Storage Program, for his continued support. We also acknowledge the
support of the U.S. Department of Education’s program on Graduate
Assistance in Areas of National Need (GAANN) grant to Texas Tech
University. The authors would like to thank Hyungjin Choi and Atri Bera

for their technical advice.
TEXAS TECH @ Sandia
National
CNTVERS T Laboratories

ESR>. U.S. DEPARTMENT OF

) ENERGY

T




( PES
References

[1] D. Kushner, "The real story of stuxnet," in IEEE Spectrum, vol. 50, no. 3, pp. 48-53, March 2013, doi: 10.1109/MSPEC.2013.6471059.

[2] M. T. Lawder et al., "Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications.," in Proc. of the IEEE, vol. 102, no. 6,
pp. 1014-1030, Jun. 2014.

[3] S. Kumbhar, T. Faika, D. Makwana, T. Kim and Y. Lee, "Cybersecurity for Battery Management Systems in Cyber-Physical Environments," 2018 IEEE Transportation
Electrification Conf. and Expo (ITEC), 2018, pp. 934-938, doi: 10.1109/ITEC.2018.8450159.

[4] Z. Liu and H. He, “Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended kalman filter,” Applied Energy, vol.
185, pp. 2033-2044, 2017.

[5] R. Xiong, Q. Yu, W. Shen, C. Lin, and F. Sun, “A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles,” IEEE Trans. Power Electronics, vol.

34, no. 10, pp. 9709-9718, 2019.

[6] M. Zeng, P. Zhang, Y. Yang, C. Xie, and Y. Shi, “Soc and soh joint estimation of the power batteries based on fuzzy unscented Kalman filtering algorithm,” Energies,
vol. 12, no. 16, 2019.

[7] N. Kharlamova, S. Hashemi, and C. Traeholt, “The cyber security of battery energy storage systems and adoption of data-driven methods,” in 2020 IEEE Third Int.
Conf. on Artificial Intelligence and Knowledge Eng. (AIKE), 2020, pp. 188—-192.

[8] N. Kharlamova, S. Hashemi and C. Traeholt, "Data-driven approaches for cyber defense of battery energy storage systems,” Energy and Al, 2021, pp. 188-192, doi:
10.1016/j.egyai.2021.100095.

[9] E. A. Wan and R. Van Der Merwe, "The unscented Kalman filter for nonlinear estimation," in Proc. of the IEEE 2000 Adaptive Systems for Signal Processing, Comm.,
and Control Symp. (Cat. No.OOEX373), 2000, pp. 153-158, doi: 10.1109/ASSPCC.2000.882463.

[10] H. Pang, L. Guo, L. Wu, and X. Jin, “An enhanced temperature-dependent model and state-of-charge estimation for a Li-lon battery using extended Kalman filter,”
Int. J. of Energy Research, pp. 7254-7266, March 2020, doi: 10.1002/er.5435.

[11] P. Pasek and P. Kaniewski, "Unscented Kalman filter application in personal navigation", in Proc. Radioelectronic Syst. Conf., Jachranka, Poland, 2019, 114421C.

[12] A. B. Lopez, K. Vatanparvar, A. P. Deb Nath, S. Yang, S. Bhunia, and M. A. Al Faruque, “A security perspective on battery systems of the internet of things,” J. of
Hardware and Syst. Security, vol. 1, no. 2, pp. 188-199, Jun 2017.

[13] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state estimation in electric power grids,” in Proc. of the 16th ACM Conf. on Comput. and

Comm. Security, New York, NY, 2009, pp. 21-32.

[14] Y. Mo and B. Sinopoli, “On the performance degradation of cyberphysical systems under stealthy integrity attacks,” IEEE Trans. Automatic Control, vol. 61, no. 9,
pp. 2618-2624, 2016.

[15] K. Fang, Y. Huang, Q. Huang, S. Yang, Z. Li and H. Cheng, "An Event Detection Approach Based on Improved CUSUM Algorithm and Kalman Filter," in Proc. 2020
IEEE 4th Conf. Energy Internet and Energy Syst. Integration (EI2), 2020, pp. 3400-3403.

[16] M. Severo and J. Gama, "Change Detection with Kalman Filter and CUSUM", in Proc. Int. Conf. Discovery Science, Barcelona, Spain, 2006, pp. 243-254.

[17] A. Sayghe, Y. Hu, I. Zografopoulos, X. Liu, R.G. Dutta, Y. Jin, and C. Konstantinou, “A Survey of Machine Learning Methods for Detecting False Data Injection

Attacks in Power Systems,” IET Smart Grid, vol. 3, no. 5, pp. 581-595 Oct., 2020.

[18] V. Obrien, V. Rao and R.D. Trevizan, "Detection of False Data Injection Attacks in Battery Stacks Using Physics-Based Modeling and Cumulative Sum Algorithm," in
Proc. 2022 IEEE Power and Energy Conf. at lllinois (PECI), 2022, doi: 10.1109/PECI54197.2022.9744036.

[19] W. C. Navidi, Statistics for Engineers and Scientists, New York, NY: McGraw-Hill Education, 2015

[20] V. Obrien, R. D. Trevizan and V. Rao, "Detecting False Data Injection Attacks to Battery State Estimation Using Cumulative Sum Algorithm," |n Proc. 53 North

4 IEEE

R "II

Amer. Power Symp., Nov. 2021 pp 1-6. qT
[21] e-Handbook of Statistical Methods, Nat. Institute of Standards and Technology and SEMATECH, Jun. 2012. =: 5

Austin, TX. November 7-9, 2022



@pes | @IEEE‘ oS T

Questions?

Thank you!



655 < IEEE

Power & Energy Society®

ATD ECM Governing Equations

Voo Ve Vey.i
Cnj =
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ATD Equations and Coefficients

Pn; = PosT?® + po2T? + po1T + Poo

Power & Energy Society®

Po3 Po2 Po1 Poo
Ro.1 6.8-1077 —35.10°° —15-1073 0.214
Rp,l 5.4-.1078 —38-107° —24.107% 0.03
ijl 0.04 — 1.677 61.1 3100
Rp1 4.4.10°7 —2-10°° —15.1073 0.114
Chi 81072 — 0.39 10.6 625
Ccap,l 0.012 — 1.4652 57.6 7200
Ry 8.373:1077 —4.057-10°° 1.548 1073 0.2146
Rp’z 7.461-10°8 —453.10°° —256-107% 0.03
Cp2 0.0397 — 1.682 60.9 3099
Rp2 46541077 —2.232.10°° —1.459.1073 0.1151
Cho2 8.17-1073 - 0.39 10.5 628
Ccmz 0.0112 - 1.47 58.68 7198
Ros3 7.356: 1077 —3.565-10°° —1.604-1073 0.2146
R,3 4779.1078 —3.639-10°° 2.301-107% 0.02986
Cp,3 0.03483 — 1.59 64.83 3066
Ry 5.116-1077 —2.346-107° —1.574-1073 0.1169
Co3 8.04-1073 — 0.39 10.6 626
CCHP.3 0.01435 — 1.489 54.69 7192

=c =-
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UKF Equations

Step 1: Initialization
fmu = E[xo]
Pojo = Py
Step 2: Prediction of States
Xiev1ke = A + Buy
Priaje = AP AT + Qg
Step 3: Generate the SPs and associated weights

Kojeyape = Fier1li

Kirerrie = Tierrjic T (J(ﬂ + A)Pk+1|k)

1

KXitngrape = et = (J(ﬂ + A)Pk+1|k)

0 A
ka+1|k T n +2

H'Eﬂkuw = W"{'ik+1|k +(1—a*+b)

I

) ) 1
Wf-'ltk+1|k = m!k+1|k = 2+ 1)

A=a’(n+x)—n

Power & Energy Society®
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Step 4: Correction

Zn
?k+1|k = z Owr;i ' h(‘xfk+1|k)
1=

Beyiesape = Zzﬂu 4 (‘r"kﬂlk N jB*‘f“l") ' [h (‘r"kﬂlk) - ?“””‘}T

f=

Pyykﬂm = Z:;. 1A (h (xik+1|k) - j?k+1|k) : [h (xikﬂm) - 57&+1|k}T
Sk+1 = B

Kiv1 = Pey, 1" Sien

Rrer1ks1 = Berrpe + Kierr " Oker — Prevagie)

— T
Pk+1|k+1 = Pk+1|.ir - Kk+15k+1Kk+1

Parameter n a b K A

Value 9 0.1 2 0 -8.91

=c =-
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EKF Equations \ -

2[klk — 1] = f(&[k — 1|k — 1], ulk — 1], E|w[k — 1]|)
Plklk — 1] = AP[k — 1]k — 1]JAT + Q
X|klk] = Xlklk — 1] + K[k](ylk]| — [k|k — 1]
ylklk — 1] = g(&[k|k — 1], ulk], E[e[k]])
ylklk] = g(2[k|k], u[k], E[e[k]])
Plklk] = Plk|k — 1] — K[k]CP[k|k — 1]
K[k] = P[klk = 1]CT (CP[k|k — 1]CT + R) ™

af (x[k)ulk]wlk])
Alk] = a a;t[k] = |x[}c]=f[k|k]
Clkgi) = 22 ) ol
B dx|k] x[k]=%[k|k]

klulk]v[k])

ag (x|
Clklk — 1] = ax[K] |x[}c]=f[k|fc—1]
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UKF vs. EKF Characteristics
UKF EKF

* Works well in all nonlinearities * Works well in systems represented by linear
* Uses sigma points to represent probability approximations

distribution of function * Requires calculation of Jacobian matrix
* Theoretically more accurate than EKF » Examples of applications: electric vehicle
» Examples of applications: power batteries, batteries, temperature-dependent batteries
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