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GEMMA Description
❑ Frequency-domain method of moments solution

▪ Steady state solution

▪ With specialized algorithms (thin-slot, etc.)

❑ Boundary element formulation

▪ Mesh surfaces of parts – interface between regions

❑ Exact radiation boundary condition

▪ Due to Green’s function

❑ Formulation results in dense (fully populated) matrix

▪ Simulations can be limited by available memory

▪ Entries are double precision complex

❑ Code has been ported and used for ND problems on CTS1, ATS1, and ATS2
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The next generation version of EIGER
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GEMMA – NEW FEATURES 

❑ Improved slot algorithm

❑ Takes into account the depth resonance of the slot

❑ Power Balance

❑ Simplified power calculations to determine the high-frequency response.
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GEMMA – NEW FEATURES 

❑ Rational Interpolation

❑ Algorithm to locate peaks - important for calculation of electromagnetic coupling

❑ Matrix fill algorithm improved

❑ Fill by unknowns (i and j) instead of by elements
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GEMMA – Example Problem (2 million unknowns) 6

External Surface Currents



GEMMA – Future Solver Development

❑ Preconditioner development

❑ Matrices have behavior much different than what is experienced with FEM solvers. 

❑ Compression Techniques 

❑ Reduce the memory footprint

❑ Iterative solution using BELOS

❑ Combining the above concepts 
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ADELUS – AMD HIP Backend Support 

❑ Necessary changes made for code and CMake to support HIP backend

❑ Trilinos configuration:

❖ hipcc compiler

❖ Architecture flag for Kokkos (For MI100: Kokkos_ARCH_VEGA908=ON)

❖ Kokkos_ENABLE_HIP=ON

❖ KokkosKernels_ENABLE_TPL_ROCBLAS:BOOL=ON/OFF

❑ rocBLAS wrappers for GEMM, IAMAX, and SCAL kernels to Kokkos Kernels 

❑ Future work: evaluate ADELUS performance on Crusher/Frontier (ORNL)
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ADELUS – Factor and Solve Interfaces 

❑ ADELUS previously only provided LU 
factorization and solve via a single 
interface Adelus::FactorSolve (matrix + 
RHS packed together)

❑ Create two separate interfaces which are 
useful for applications that (i) do not have 
RHS at the time of factorization OR (ii) need 
to solve different RHSs with a pre-factorized 
matrix

❖ Adelus::Factor: LU factorization

❖ Adelus::Solve: forward solve + backward 
solve

❖ Support execution on GPUs and multiple 
RHS vectors
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Adelus::Factor
factor()

permute_mat()

lu_()

Adelus::Solve

permute_rhs()
forward()

back_solve6()
perm1_()

solve_()



ADELUS – General Communicator and Global Variables Removal10

❑ Enable ADELUS to run on an arbitrary 
communicator rather than 
MPI_COMM_WORLD 
❖ Create sub-communicators and launch 

Adelus to solve many linear equation 
systems

❑ A new class, AdelusHandle, contains:
❖ a communicator, global variables, 

constructor and methods to retrieve these 
variables

❑ A handle needs to be created and 
passed through Adelus interfaces from 
application code

class AdelusHandle {

private:

//Comm. variables and used-to-be global variables

int my_rows;       // num of rows I own

int my_cols;       // num of cols I own

int my_rhs;        // number of RHSs that I own

…

MPI_Comm row_comm; // row sub-communicator

MPI_Comm col_comm; // column sub-communicator

MPI_Comm comm;     // communicator that I belong to

public:

AdelusHandle (MPI_Comm comm_, const int matrix_size_, 

const int num_procsr_, const int num_rhs_, …) {

//Calculate global vars and create row and col sub-comms

…

}

KOKKOS_INLINE_FUNCTION

MPI_Comm get_comm() const { return comm; }

…  

KOKKOS_INLINE_FUNCTION

int get_my_rows() const { return my_rows; }.

};

//Create handle

Adelus::AdelusHandle ahandle(my_color, sub_comm, 

matrix_size, nprocs_row, nrhs );

//Pass through Adelus interfaces

Adelus::Factor (ahandle, my_A, h_permute, &secs);

Adelus

Application



ADELUS – Backsolve Performance Improvement 11

❑ Issue: backsolve previously did not 
scale well with large numbers of RHS 
vectors
❖ Using pipelined communication for the 

whole RHS mutivectors across MPI 
processes at each column iteration

❑ Improvement:
❖ Broadcasting only one current active 

column within row communicators at 
each iteration → communication 
overhead is significantly reduced 1
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ADELUS – Future Performance Improvement

❑ Allow using tile size greater than 1 

❑ Allow using mixed-precision
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