
Sandia National Laboratories is a
multimission laboratory managed

and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of

Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under

contract DE-NA0003525.

GEMMA Electromagnetic Code
and ADELUS - New Capabilities

Joseph D. Kotulsk i , V inh Dang 1352

jdkotul@sandia.gov, vqdang@sandia.gov

Trilinos User Group Meeting 2022

October 25, 2022

SAND2022-14841CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

GEMMA Description
❑ Frequency-domain method of moments solution

▪ Steady state solution

▪ With specialized algorithms (thin-slot, etc.)

❑ Boundary element formulation

▪ Mesh surfaces of parts – interface between regions

❑ Exact radiation boundary condition

▪ Due to Green’s function

❑ Formulation results in dense (fully populated) matrix

▪ Simulations can be limited by available memory

▪ Entries are double precision complex

❑ Code has been ported and used for ND problems on CTS1, ATS1, and ATS2

2

HPC

The next generation version of EIGER

Capability on Next-Generation Hardware3

GEMMA – NEW FEATURES

❑ Improved slot algorithm

❑ Takes into account the depth resonance of the slot

❑ Power Balance

❑ Simplified power calculations to determine the high-frequency response.

4

GEMMA – NEW FEATURES

❑ Rational Interpolation

❑ Algorithm to locate peaks - important for calculation of electromagnetic coupling

❑ Matrix fill algorithm improved

❑ Fill by unknowns (i and j) instead of by elements

5

27 x Speedup33 x Speedup

GEMMA – Example Problem (2 million unknowns) 6

External Surface Currents

GEMMA – Future Solver Development

❑ Preconditioner development

❑ Matrices have behavior much different than what is experienced with FEM solvers.

❑ Compression Techniques

❑ Reduce the memory footprint

❑ Iterative solution using BELOS

❑ Combining the above concepts

7

ADELUS – AMD HIP Backend Support

❑ Necessary changes made for code and CMake to support HIP backend

❑ Trilinos configuration:

❖ hipcc compiler

❖ Architecture flag for Kokkos (For MI100: Kokkos_ARCH_VEGA908=ON)

❖ Kokkos_ENABLE_HIP=ON

❖ KokkosKernels_ENABLE_TPL_ROCBLAS:BOOL=ON/OFF

❑ rocBLAS wrappers for GEMM, IAMAX, and SCAL kernels to Kokkos Kernels

❑ Future work: evaluate ADELUS performance on Crusher/Frontier (ORNL)

8

ADELUS – Factor and Solve Interfaces

❑ ADELUS previously only provided LU
factorization and solve via a single
interface Adelus::FactorSolve (matrix +
RHS packed together)

❑ Create two separate interfaces which are
useful for applications that (i) do not have
RHS at the time of factorization OR (ii) need
to solve different RHSs with a pre-factorized
matrix

❖ Adelus::Factor: LU factorization

❖ Adelus::Solve: forward solve + backward
solve

❖ Support execution on GPUs and multiple
RHS vectors

9

Adelus::Factor
factor()

permute_mat()

lu_()

Adelus::Solve

permute_rhs()
forward()

back_solve6()
perm1_()

solve_()

ADELUS – General Communicator and Global Variables Removal10

❑ Enable ADELUS to run on an arbitrary
communicator rather than
MPI_COMM_WORLD
❖ Create sub-communicators and launch

Adelus to solve many linear equation
systems

❑ A new class, AdelusHandle, contains:
❖ a communicator, global variables,

constructor and methods to retrieve these
variables

❑ A handle needs to be created and
passed through Adelus interfaces from
application code

class AdelusHandle {

private:

//Comm. variables and used-to-be global variables

int my_rows; // num of rows I own

int my_cols; // num of cols I own

int my_rhs; // number of RHSs that I own

…

MPI_Comm row_comm; // row sub-communicator

MPI_Comm col_comm; // column sub-communicator

MPI_Comm comm; // communicator that I belong to

public:

AdelusHandle (MPI_Comm comm_, const int matrix_size_,

const int num_procsr_, const int num_rhs_, …) {

//Calculate global vars and create row and col sub-comms

…

}

KOKKOS_INLINE_FUNCTION

MPI_Comm get_comm() const { return comm; }

…

KOKKOS_INLINE_FUNCTION

int get_my_rows() const { return my_rows; }.

};

//Create handle

Adelus::AdelusHandle ahandle(my_color, sub_comm,

matrix_size, nprocs_row, nrhs);

//Pass through Adelus interfaces

Adelus::Factor (ahandle, my_A, h_permute, &secs);

Adelus

Application

ADELUS – Backsolve Performance Improvement 11

❑ Issue: backsolve previously did not
scale well with large numbers of RHS
vectors
❖ Using pipelined communication for the

whole RHS mutivectors across MPI
processes at each column iteration

❑ Improvement:
❖ Broadcasting only one current active

column within row communicators at
each iteration → communication
overhead is significantly reduced 1

10

100

1000

10000

1 2 4 6 8

1
0

1
2

1
6

2
0

2
4

2
8

3
2

4
0

4
8

6
4

1
2
8

2
5
6

5
1
2

T
im

e
 (

se
c
.)

Number of RHS vectors

RHS Scaling with Factor + Solve
(N = 111528, 16 GPUs (4 x 4))

Factor

Solve (old)

Solve (new)

1.06x
22x

ADELUS – Future Performance Improvement

❑ Allow using tile size greater than 1

❑ Allow using mixed-precision

12

