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Cylindrical Time-Encoded Imaging

* A rotating coded mask modulates a static source, producing a
detector count rate over time that resembles the mask pattern.

« The size of the detector compared to the distance to the inner layer
of the mask dictates the count rate over time.
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Motivation

NNSA Nuclear Nonproliferation Mission Statement
Preventing nuclear weapons proliferation and reducing the threat of
nuclear and radiological terrorism around the world are key U.S
national security strategic objectives that require constant vigilance.
NNSA's Office of Defense Nuclear Nonproliferation works globally
to prevent state and non-state actors from developing nuclear
weapons or acquiring weapons-usable nuclear or radiological
materials, equipment, technology, and expertise.

* Nonproliferation applications: source verification and search
operations, forensics, post-event operations (deterrent
capability)

- Effective Fieldable Instrument: Compact, cost-effective fast
neutron/gamma imagers

* Project Goal: Retain image quality when transitioning from a
large to small diameter coded mask.
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PROJECT PLAN

 PHASE 1: design and implement initial system
— design mask bed
— compare coded aperture patterns
— implement 1-3 layered designs

« PHASE 2: simulate and implement design refinements
— use MCNP for tungsten side wall effectiveness
— Evaluate tradeoffs for weight, size, SNR, and image resolution
— Compare LANTERN designs for specific applications

 PHASE 3: project validation and advancement
— more sophisticated imaging and coded aperture techniques
— measurement campaigns
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Coded Aperture Optimization

» Ideal Coded Aperture = Uniformly Redundant Array (URA)
— Autocorrelation results in a delta function

« Random Pattern

— Can be optimized with several techniques: Great Deluge Algorithm, Ant Colony
Optimization, spread functions

— Can utilize experimentally derived sensing matrices

* Mask Anti-Mask Pattern (currently utilized by Sandia’s COGNIZANT)
— Half the mask is a mirror opposite of the other half
— Usually relies on random pattern optimization

Mask Anti-Mask

Sandia COGNIZANT mask-antimask cTEI configuration
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Mask Test Bed

* Design of a mask bed for testing of several unconventional cTEI
masks

« Allows for multiple material layers and can handle a range of inner
and outer mask radii

* Goal: Allow for even and odd numbered mask patterns (can have
URAs as well as mask anti-mask patterns)
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Current LANTERN Design

Tungsten
Layers

Scintillator Polycarbonate
Layers
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Experimental Results

* Measured an 883 uCi Cf-252 S.F. source with poly & tungsten mask & 1”
CLLBC

 Prominent pulse undershoot in most waveforms

 The thermal neutron capture island has less separation from the
gamma-ray band for the “fixed” pulses than the “undershoot” pulses.

» Particle classification may be done with the “undershoot” pulses as is.
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Simulation Designs

« First 5 LANTERN design variations with fixed inner/outer diameters
— Polycarbonate (green)
— Tungsten (red) ~ Tungsten Layers
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Simulation Results — Angular Resolution

Simulated angular resolution ranges from 9° - 12°, %
Larger detectors result in greater side lobe noise. %

* Hypothesis: tungsten may only be required on the side | |
of open elements for gamma-rays 9/

— This design has very low SNR and noise in side lobes is %
increased. ﬁ
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Simulation Results — Tungsten Side Walls

« MCNPX-PoliMi Result: tungsten addition to the side of open elements
effectively decreases escape through closed mask elements

« Side wall extension improves SNR but does not significantly improve
angular resolution and increases side lobe noise.

Using an experimentally derived sensing matrix improves angular
resolution.

LANTERN Side Wall Varying Lengths: 1in. CLLBC
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Zero Knowledge Testing of Modified Extended Sources

* An ideal mask anti-mask pattern should view two identical ring
sources as Poisson noise

« Maximum deviation from Poisson is desired when sources are not identical in
ring diameter
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* Figure of merit - mean of negative log likelihood (NLL)

Results - Great Deluge Algorithm

 GDA generated patterns perform worse than COGNIZANT original
pattern for smaller sources but better for extended sources

. COGNIZANT original pattern
50 - H Baetes Faiun = ¢ om
E . : Baveen Rl = 5 o
I ' 5 Ratas
Lot
10*F e
- . I
@
| 9 e
L) @nsend

a

0cm
0cm
5cm
5cm
5cm
10 cm
10 cm
10 cm
15cm
15 cm

15 cm

d

& a LIE TR - P A ]
radiug fam)

1st Source Modified Source Radius 1 Dq'
Radius

0cm
1cm
4cm
5cm
6 cm
9cm
10 cm
11 cm
14 cm
15cm

16 cm

MICHIGAN ENGINEERING

UNIVERSITY OF MICHIGAN

GDA Optimized FOM Pattern overlapping
COGNIZANT original pattern

GDA Pattern #3 overlapping
COGNIZANT original pattern
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Results - Ant Colony Optimization

« Optimization Focus: 4 cm radius square source

* Optimizing at small square source sizes shows improvement over
current Sandia mask pattern for smaller sizes but not for larger

sized sources.
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Results - Ant Colony Optimization

Optimization Focus: 12 cm radius square source

Optimizing at large square source sizes shows improvement over
current Sandia mask pattern for larger sizes but not for smaller
sized sources.
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Conclusions

 PHASE 1: design and implement initial system

— coded aperture optimization methods for LANTERN and COGNIZANT have
been developed

— pulse shape discrimination code needs to be optimized for finalizing of current
LANTERN results and more initial designs need to be implemented

« PHASE 2: simulate and implement complex designs

— tungsten side walls are useful in decreasing escape through closed mask
elements

— weight, SNR, and image resolution still need to be optimized as mask
thickness and other detectors still need to be tested

 PHASE 3: project validation and advancement

— advanced imaging techniques using sparse reconstruction algorithms and
experimental sensing matrices can greatly improve image quality
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System Comparisons

MATADOR (Michigan)
- e lanTErn (Michigan)

CONFIDANTE (Sandia)

Outer Dimeter: 66.6 cm Outer Diameter: 51.4 cm Outer Diameter: 30.635 cm
Inner Diameter: 56.6 cm Inner Diameter: ~25 cm Inner Diameter: ~12 cm
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 Measured an 883 uCi Cf-252 S.F. source with poly & tungsten mask & 1” CLLBC

* Prominent pulse undershoot in most waveforms
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Coded Aperture Optimization - Sandia

* Point spread function
« “square” spread function

. " ) } Better representation for extended sources
« “circle” spread function

* Great Deluge Algorithm
* random patterns

1 b\ 1 1
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« X andly are the dimensions of the coded
aperture pattern and a and A are the pattern and
the Fast Fourier Transform of the pattern,
respectively
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Ant Colony Optimization

-~ Seot parameter values for ACO -
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