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Cylindrical Time-Encoded Imaging

• A rotating coded mask modulates a static source, producing a 
detector count rate over time that resembles the mask pattern.

• The size of the detector compared to the distance to the inner layer 
of the mask dictates the count rate over time.
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Motivation

• Nonproliferation applications: source verification and search 
operations, forensics, post-event operations (deterrent 
capability)

• Effective Fieldable Instrument: Compact, cost-effective fast 
neutron/gamma imagers

• Project Goal: Retain image quality when transitioning from a 
large to small diameter coded mask.

NNSA Nuclear Nonproliferation Mission Statement
Preventing nuclear weapons proliferation and reducing the threat of 
nuclear and radiological terrorism around the world are key U.S 
national security strategic objectives that require constant vigilance.
NNSA's Office of Defense Nuclear Nonproliferation works globally 
to prevent state and non-state actors from developing nuclear 
weapons or acquiring weapons-usable nuclear or radiological 
materials, equipment, technology, and expertise.



4

PROJECT PLAN

• PHASE 1: design and implement initial system
– design mask bed
– compare coded aperture patterns
– implement 1-3 layered designs

• PHASE 2: simulate and implement design refinements
– use MCNP for tungsten side wall effectiveness
– Evaluate tradeoffs for weight, size, SNR, and image resolution
– Compare LANTERN designs for specific applications

• PHASE 3: project validation and advancement
– more sophisticated imaging and coded aperture techniques
– measurement campaigns
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Coded Aperture Optimization

• Ideal Coded Aperture  Uniformly Redundant Array (URA)
– Autocorrelation results in a delta function

• Random Pattern
– Can be optimized with several techniques: Great Deluge Algorithm, Ant Colony 

Optimization, spread functions
– Can utilize experimentally derived sensing matrices

• Mask Anti-Mask Pattern (currently utilized by Sandia’s COGNIZANT)
– Half the mask is a mirror opposite of the other half
– Usually relies on random pattern optimization

Sandia COGNIZANT mask-antimask cTEI configuration

Mask       Anti-Mask
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• Design of a mask bed for testing of several unconventional cTEI 
masks

• Allows for multiple material layers and can handle a range of inner 
and outer mask radii

• Goal: Allow for even and odd numbered mask patterns (can have 
URAs as well as mask anti-mask patterns)

42
21 (URA)
14
7 (URA)
6 (URA)
3 (URA)

Mask Test Bed
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Current LANTERN Design

Scintillator
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Layers

Polycarbonate 
Layers
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Experimental Results

• Measured an 883 µCi Cf-252 S.F. source with poly & tungsten mask & 1” 
CLLBC

• Prominent pulse undershoot in most waveforms

• The thermal neutron capture island has less separation from the 
gamma-ray band for the “fixed” pulses than the “undershoot” pulses.

• Particle classification may be done with the “undershoot” pulses as is.

Undershoot Corrected Pulses               Undershoot Pulses
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• First 5 LANTERN design variations with fixed inner/outer diameters
– Polycarbonate (green)
– Tungsten (red)

Simulation Designs

4.34075 kg  9.16375 kg  23.41575 kg

17.85265 kg

13.02965 kg 

Tungsten Layers

Tungsten Side 
Wall Extensions
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Simulation Results – Angular Resolution

• Simulated angular resolution ranges from 9o - 12o.  
Larger detectors result in greater side lobe noise.

• Hypothesis: tungsten may only be required on the side 
of open elements for gamma-rays
– This design has very low SNR and noise in side lobes is 

increased.
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Simulation Results – Tungsten Side Walls

• MCNPX-PoliMi Result: tungsten addition to the side of open elements 
effectively decreases escape through closed mask elements

• Side wall extension improves SNR but does not significantly improve 
angular resolution and increases side lobe noise.

• Using an experimentally derived sensing matrix improves angular 
resolution.



13

PROJECT PLAN

• PHASE 1: design and implement initial system
– design mask bed
– compare coded aperture patterns
– implement 1-3 layered designs

• PHASE 2: simulate and implement design refinements
– use MCNP for tungsten side wall effectiveness
– Evaluate tradeoffs for weight, size, SNR, and image resolution
– Compare LANTERN designs for specific applications

• PHASE 3: project validation and advancement
– more sophisticated imaging and coded aperture techniques
– measurement campaigns



14

Zero Knowledge Testing of Modified Extended Sources

• An ideal mask anti-mask pattern should view two identical ring 
sources as Poisson noise
• Maximum deviation from Poisson is desired when sources are not identical in 

ring diameter

Identical Eu Ring Sources of Diameter 5 cm One Eu Source Diameter is Modified to 6 cm

Very little 
deviation 
from Poisson 
noise

Deviation 
from 
Poisson 
noise
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Results - Great Deluge Algorithm

• Figure of merit - mean of negative log likelihood (NLL)

• GDA generated patterns perform worse than COGNIZANT original 
pattern for smaller sources but better for extended sources

COGNIZANT original pattern

GDA Pattern #3 overlapping 
COGNIZANT original pattern

GDA Optimized FOM Pattern overlapping 
COGNIZANT original pattern

Poisson noise (3 sigma)

1st Source 
Radius

Modified Source Radius

0 cm 0 cm

0 cm 1 cm

5 cm 4 cm

5 cm 5 cm

5 cm 6 cm

10 cm 9 cm

10 cm 10 cm

10 cm 11 cm

15 cm 14 cm

15 cm 15 cm

15 cm 16 cm
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Results - Ant Colony Optimization

• Optimization Focus: 4 cm radius square source

• Optimizing at small square source sizes shows improvement over 
current Sandia mask pattern for smaller sizes but not for larger 
sized sources.
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• Optimization Focus: 12 cm radius square source

• Optimizing at large square source sizes shows improvement over 
current Sandia mask pattern for larger sizes but not for smaller 
sized sources.

Results - Ant Colony Optimization
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Conclusions

• PHASE 1: design and implement initial system
– coded aperture optimization methods for LANTERN and COGNIZANT have 

been developed
– pulse shape discrimination code needs to be optimized for finalizing of current 

LANTERN results and more initial designs need to be implemented

• PHASE 2: simulate and implement complex designs
– tungsten side walls are useful in decreasing escape through closed mask 

elements
– weight, SNR, and image resolution still need to be optimized as mask 

thickness and other detectors still need to be tested

• PHASE 3: project validation and advancement
– advanced imaging techniques using sparse reconstruction algorithms and 

experimental sensing matrices can greatly improve image quality
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System Comparisons

CONFIDANTE (Sandia)

MATADOR (Michigan)
lanTErn (Michigan)

Outer Diameter: 51.4 cm
 Inner Diameter:  ~25 cm

Outer Diameter: 30.635 cm
 Inner Diameter:       ~12 cm

Outer Diameter: 66.6 cm
 Inner Diameter: 56.6 cm
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Current Measurement Data• Measured an 883 µCi Cf-252 S.F. source with poly & tungsten mask & 1” CLLBC

• Prominent pulse undershoot in most waveforms

Pulse 
Undershoot

Thermal Neutron Capture

Total Integral

Undershoot Integral
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• Point spread function
• “square” spread function
• “circle” spread function

• Great Deluge Algorithm
• random patterns

• ᵄ�ᵆ�  and ᵄ�ᵆ�  are the dimensions of the coded 
aperture pattern and ᵄ�  and ᵃ�  are the pattern and 
the Fast Fourier Transform of the pattern, 
respectively

• Ant Colony Optimization

Coded Aperture Optimization - Sandia

Better representation for extended sources

Sandia COGNIZANT mask-antimask cTEI configuration
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Ant Colony Optimization


