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Motivations for ion-irradiated materials

 Targeting tumors in radiation therapy
 Radiation hardness in space and nuclear environments
 Controlling damage, defects in materials imaging and processing

e Achieving ignition for fusion energy
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Bridging the Gap between Plasma and Condensed Matter

Goals:
» develop first-principles understanding of T-effects (pseudization)
» reduce cost of TDDFT stopping calculations (trajectories)

 benchmark cheaper AA against more accurate but expensive TDDF'T
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Average Atom Models

* Mean-field model of electronic ground state of a single atom
* Assume spherical symmetry

* Self-consistently solve for n(r) within Wigner-Seitz sphere

H[n(r)]o;(r) = e5¢,(r)

(1) = g D (3020205 + )16 )P
Aln(r)] = 3 g~ 2+ Viae (1)) + Vaeln(r)] + 2970

* Apply various models to compute observables from atomic orbitals and energy levels

- often separate treatment of “bound” and “free” electrons
v Efficient and “accurate” across wide range of plasma conditions
Breaks down at high densities in warm dense matter regime
v Extensions relax symmetry assumptions

X Band structure, dynamics, effects beyond GS orbitals challenging



Stopping powers from RT-TDDEFT

e .
Initial condition: equilibrium state from Mermin-DF'T Z_t¢j(ra t) = Hln(r,t)]¢;(r,1)
Evolve electron density n(r,t) in real time Z £:(T)|¢;(r,1))?
~ V2 n(r’,t
A 0)(0) = — o + Vo) + [ 22D e 4 v e, )
2 Ir — /|
. °3‘
explicit time-dependence
from moving ion y 4 ° Y
» often nonlinear
e requires real-time treatment pseudopotential adiabatic local density
e in some sense, approximate! approximation approximation
* neglects core * seems sufficient
excitations * alternatives too expensive
* allows detailed * memory effects unknown
insights into

e thermal effects unknown

mechanisms

S ~ F,[n](t) =— <8£{[Z]> + PAW terms




Projectile trajectory: theory vs. experiment

A TDDFT calculation models a
particular path through the material...

But experiments involve

finite-width beams...

And applications involve

randomly oriented radiation!
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Trajectories Determine Core Excitation Sampling

Channeling trajectory does not excite core

Core-electron stopping very sensitive!

experiment
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Free-electron stopping ~independent of trajectory

Close collisions needed to excite core and capture
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Projectile trajectory: theory vs. experiment

A TDDFT calculation models a
particular path through the material...

But experiments involve

finite-width beams...

And applications involve

randomly oriented radiation!

Solutions:
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e Use a single, random trajectory — could get unlucky

o Average TDDFT results over many trajectories — expensive

» Use a single, carefully chosen, representative trajectory




Quantitative Metric to Evaluate Trajectories
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Quantitative Metric to Evaluate Trajectories

* Projectile should experience 9
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Quantitative Metric to Evaluate Trajectories

* Projectile should experience 9
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The Centroid Path Approximation

Stopping power (a.u.)

Helpful for covalently bonded materials, e.g., graphene, near/below peak

Inadequately captures core contributions at high v, even for low Z materials
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Quantitative Metric to Evaluate Trajectories

* Projectile should experience
representative NN distances

* Ideal NN distribution: sample
random points in cell

* Good trajectory achieves low
Hellinger distance
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Quantitative Metric to Evaluate Trajectories

* Projectile should experience 9
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Quantitative Metric to Evaluate Trajectories

* Projectile should experience
representative NN distances

* Ideal NN distribution: sample
random points in cell

* Good trajectory achieves low
Hellinger distance
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Quantitative Metric to Evaluate Trajectories

* Projectile should experience
representative NN distances

* Ideal NN distribution: sample
random points in cell

* Good trajectory achieves low
Hellinger distance
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Quantitative Metric to Evaluate Trajectories

Tests for v=4 at. u. proton in ambient aluminum
“Good” trajectories agree within 1% and reproduce empirical data

“Bad” trajectories off by up to 65% — incorrect sampling of close collisions
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Trajectory Statistics
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No channeling trajectory achieves D, < 0.3
D,, very sensitive to trajectory angle (for finite path length)

~25% of random trajectories have D, > 0.1 after 80 A
More likely to get unlucky in melted system!
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Proton Stopping in Aluminum: ion temperature

stopping power (eV/A)

— across different T

— across different atomic configurations

— thermalized vs. isochorically heated systems

— slight variation with projectile trajectory

Trajectory metric allows controlled comparisons in WDM

Free-electron stopping independent of ion temperature

— selecting similarly optimized trajectories important

* Verifying independence of core contribution

T =0, channeling
—&= T =1eV, optimized
—=- T.=0, optimized
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Proton Stopping in Liquid Carbon: atomic configurations

Thermal fluctuations may affect stopping
Separately optimized trajectory for several MD snapshots
Little variation across atomic configurations

Trajectory metric may eliminate need for configurational averaging
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Proton Stopping in Liquid Carbon: comparing to AA

* AA parameterizes dielectric models entering into stopping power

* Significant discrepancies with all models
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Proton Stopping in Aluminum: electron temperature

At high T , Bragg peak lowers and shifts to higher velocities

Different pseudizations offer rough insight:

— 11e PP: total stopping
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Proton Stopping in Aluminum: electron temperature

At high T , Bragg peak lowers and shifts to higher velocities
* Different pseudizations offer rough insight:
— 11e PP: total stopping

— 3e PP: ~free-electron contribution follows same trend as total
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Proton Stopping in Aluminum: electron temperature

At high T , Bragg peak lowers and shifts to higher velocities
* Different pseudizations offer rough insight:
— 11e PP: total stopping

— 3e PP: ~free-electron contribution follows same trend as total

— 1le PP — 3e PP: ~core contribution not sensitive to T,
but accounts for increasing fraction of total

—=1cV =@=total
©=10eV =A=free
5 =@=20cV - core
"‘k’*’

a4 ¥ n‘ \
@ &, é‘A-A ﬁ‘ \
e e

stopping power (eV/A)
-1
N
1

-. . :: sl Eans "
2.5 1 £ ,.i:.; v
] u'é:”
0.0----F'----.---.---......
0 1 2 3 4 5%

proton velocity (at.u.)

24



Proton Stopping in Aluminum: electron temperature

Competing effects obfuscated!

Thermal excitations increase free-electron density

— 3ePP underestimates free-electron contribution at 20eV
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Proton Stopping in Aluminum: electron temperature

Competing effects obfuscated!

Thermal excitations increase free-electron density

— 3ePP underestimates free-electron contribution at 20eV

Thermal depletion of low-energy free states and deeper 2p binding

alter 2p — free energetics
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Proton Stopping in Aluminum: electron temperature

Competing effects obfuscated!
Thermal excitations increase free-electron density
— 3ePP underestimates free-electron contribution at 20eV

Thermal depletion of low-energy free states and deeper 2p binding
alter 2p — free energetics

Thermal depletion of 2p allows 2s — 2p at 20eV

Working to disentangle these processes
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Isolating 2s and 2p contributions

e Besides changing the PP, we can freeze shells!

e 1le PP with 2s and 2p frozen

— reproduces 3e PP result at low T

- will give true free-electron contribution at high T

e 1le PP with 2s frozen ~ 9¢ PP

- allows separate analysis of 2s and 2p contributions
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Summary and Outlook

* Developed cost-reducing trajectory metric for stopping calculations

* Found negligible T;, configurational effects

* Studying core electron mechanisms at high T

* Informing improvements to efficient AA models

* Ultimately interested in mixtures / heterogeneous systems
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