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Motivations for ion-irradiated materials
● Targeting tumors in radiation therapy
● Radiation hardness in space and nuclear environments
● Controlling damage, defects in materials imaging and processing
● Achieving ignition for fusion energy stopping power:friction force experienced by an ion traversing matter

Kononov and Schleife, Nano Lett. 21 (2021)Kononov et al., 2D Mater. 9 (2022)
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Bridging the Gap between Plasma and Condensed MatterGoals: 
● develop first-principles understanding of T-effects (pseudization)
● reduce cost of TDDFT stopping calculations (trajectories)
● benchmark cheaper AA against more accurate but expensive TDDFT

warm densematter
average atom           (AA) 

time-dependent    density functional      theory (TDDFT)condensed matter

plasma ● Many thermally occupied KS states
● ~10 million CPU-hours per data point!
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Average Atom Models
● Mean-field model of electronic ground state of a single atom

● Assume spherical symmetry

● Self-consistently solve for        within Wigner-Seitz sphere

● Apply various models to compute observables from atomic orbitals and energy levels
– often separate treatment of “bound” and “free” electrons

✔ Efficient and “accurate” across wide range of plasma conditions
✗ Breaks down at high densities in warm dense matter regime
✔ Extensions relax symmetry assumptions
✗ Band structure, dynamics, effects beyond GS orbitals challenging
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Stopping powers from RT-TDDFT
Initial condition: equilibrium state from Mermin-DFT

Evolve electron density           in real time

adiabatic local densityapproximation
● seems sufficient
● alternatives too expensive
● memory effects unknown
● thermal effects unknown

pseudopotentialapproximation
● neglects core excitations
● allows detailed insights into mechanisms

explicit time-dependencefrom moving ion
● often nonlinear
● requires real-time treatment
● in some sense, approximate!

S  ~       +  PAW terms

Al Al
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Projectile trajectory: theory vs. experiment
A TDDFT calculation models a particular path through the material...
But experiments involve finite-width beams...
And applications involve randomly oriented radiation!
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● Channeling trajectory does not excite core
● Free-electron stopping ~independent of trajectory
● Core-electron stopping very sensitive!
● Close collisions needed to excite core and capture experiment

Trajectories Determine Core Excitation Sampling

Schleife et al., PRB 91 (2015)

–– SRIM (empirical) - - channel, free–– channel, free+core- - off-channel, free–– off-channel, free+core

channeling

off-channeling

H in Al
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Projectile trajectory: theory vs. experiment
A TDDFT calculation models a particular path through the material...
But experiments involve finite-width beams...
And applications involve randomly oriented radiation!
Solutions:

● Use a single, random trajectory – could get unlucky
● Average TDDFT results over many trajectories – expensive
● Use a single, carefully chosen, representative trajectory
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Quantitative Metric to Evaluate Trajectories

ambient aluminum

 Projectile should experience representative NN distances
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Quantitative Metric to Evaluate Trajectories

ambient aluminum

 Projectile should experience representative NN distances
 Ideal NN distribution: sample random points in cell
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Quantitative Metric to Evaluate Trajectories

ambient aluminum

 Projectile should experience representative NN distances
 Ideal NN distribution: sample random points in cell
 Good trajectory achieves low Hellinger distance
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● Helpful for covalently bonded materials, e.g., graphene, near/below peak
● Inadequately captures core contributions at high v, even for low Z materials

Kononov and Schleife, Nano Lett. 21 (2021)Ziegler et al., Nucl. Instrum. Meth. B 268 (2010)Ojanperä et al., Phys. Rev. B 89 (2014)Zhao et al., J. Phys.-Condens. Mat. 27 (2015)

Maliyov et al., Eur. Phys. J B (2018)

Li, v = 0.5 au Li, v = 4 au

The Centroid Path Approximation
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Quantitative Metric to Evaluate Trajectories
 Projectile should experience representative NN distances
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 Good trajectory achieves low Hellinger distance

ambient aluminum
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Quantitative Metric to Evaluate Trajectories

Schleife et al., PRB 91 (2015)
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Quantitative Metric to Evaluate Trajectories
 Projectile should experience representative NN distances
 Ideal NN distribution: sample random points in cell
 Good trajectory achieves low Hellinger distance

Schleife et al., PRB 91 (2015)

ambient aluminum
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Quantitative Metric to Evaluate Trajectories
 Tests for v=4 at. u. proton in ambient aluminum
 “Good” trajectories agree within 1% and reproduce empirical data
 “Bad” trajectories off by up to 65% – incorrect sampling of close collisions 

Schleife et al., PRB 91 (2015)Ziegler et al., Nucl. Instrum. Methods B 268 (2010)
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Trajectory Statistics
 No channeling trajectory achieves DH < 0.3
 DH very sensitive to trajectory angle (for finite path length)
 ~25% of random trajectories have DH > 0.1 after 80 Å
 More likely to get unlucky in melted system!
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 Trajectory metric allows controlled comparisons in WDM
– across different T
– across different atomic configurations 
– thermalized vs. isochorically heated systems

 Free-electron stopping independent of ion temperature
– slight variation with projectile trajectory
– selecting similarly optimized trajectories important

 Verifying independence of core contribution

Te=1eV

Proton Stopping in Aluminum: ion temperature

Ti=0, channelingTi=1eV, optimizedTi=0, optimized Ti=0Ti=1eV
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Proton Stopping in Liquid Carbon: atomic configurations
 Thermal fluctuations may affect stopping
 Separately optimized trajectory for several MD snapshots
 Little variation across atomic configurations
 Trajectory metric may eliminate need for configurational averaging10g/cc, 10eV10g/cc, 1eVEtot=5.87 eV/atomP=25.8 Mbar Etot=5.96 eV/atomP=25.7 Mbar

Etot=6.01 eV/atomP=25.9 Mbar
Etot=-7.13 eV/atomP=46.3 Mbar Etot=-5.98 eV/atomP=47.5 Mbar
Etot=-6.22 eV/atomP=47.1 Mbar Etot=-6.59 eV/atomP=46.8 Mbar
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Proton Stopping in Liquid Carbon: comparing to AA
 AA parameterizes dielectric models entering into stopping power
 Significant discrepancies with all models

10g/cc, 10eV10g/cc, 1eV
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 At high Te, Bragg peak lowers and shifts to higher velocities
 Different pseudizations offer rough insight:
– 11e PP: total stopping

Al+1s

Proton Stopping in Aluminum: electron temperature
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 At high Te, Bragg peak lowers and shifts to higher velocities
 Different pseudizations offer rough insight:
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– 3e PP: ~free-electron contribution follows same trend as total

Al+1s Al+1s,2s,2p
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 At high Te, Bragg peak lowers and shifts to higher velocities
 Different pseudizations offer rough insight:
– 11e PP: total stopping
– 3e PP: ~free-electron contribution follows same trend as total
– 11e PP – 3e PP: ~core contribution not sensitive to Te,but accounts for increasing fraction of total

Al+1s

≈
–

Al+1s

Proton Stopping in Aluminum: electron temperature

Al+1s,2s,2p
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 Competing effects obfuscated!
 Thermal excitations increase free-electron density
– 3ePP underestimates free-electron contribution at 20eV

1eV 10eV 20eVfree electrons per atom 3.00 3.02 3.61

Proton Stopping in Aluminum: electron temperature
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 Competing effects obfuscated!
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 Thermal depletion of low-energy free states and deeper 2p binding alter 2p → free energetics
1eV 10eV 20eVfree electrons per atom 3.00 3.02 3.612p – free energy difference  (eV) 65 55 62.5
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 Competing effects obfuscated!
 Thermal excitations increase free-electron density
– 3ePP underestimates free-electron contribution at 20eV 

 Thermal depletion of low-energy free states and deeper 2p binding alter 2p → free energetics
 Thermal depletion of 2p allows 2s → 2p at 20eV
 Working to disentangle these processes

1eV 10eV 20eVfree electrons per atom 3.00 3.02 3.612p – free energy difference  (eV) 65 55 62.5
2p vacancy (%) 0 0.5 9.6

Proton Stopping in Aluminum: electron temperature
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Isolating 2s and 2p contributions
● Besides changing the PP, we can freeze shells!
● 11e PP with 2s and 2p frozen

– reproduces 3e PP result at low T
– will give true free-electron contribution at high T

● 11e PP with 2s frozen ~ 9e PP
– allows separate analysis of 2s and 2p contributions

Al+1s

≈
– Al+1s

Al+1s

≈
– Al+1s

Al+1s
Al+1s

Te=1eV
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Summary and Outlook
 Developed cost-reducing trajectory metric for stopping calculations
 Found negligible Ti, configurational effects 
 Studying core electron mechanisms at high T
 Informing improvements to efficient AA models
 Ultimately interested in mixtures / heterogeneous systems


