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Abstract

This paper presents an assessment of electrical device
measurements using functional data analysis (FDA)
on a test case of Zener diode devices. We employ
three techniques from FDA to quantify the variability
in device behavior, primarily due to production lot
and demonstrate that this has a significant effect in
our data set. We also argue for the expanded use of
FDA methods in providing principled, quantitative
analysis of electrical device data.

(Keywords: Electrical Device Modeling, Functional
Data Analysis)

Introduction

The principled statistical analysis of electrical device
data can yield important insights and influence
decisions in numerous areas related to device
technology and manufacturing. This paper describes
the statistical analysis of a set of electrical
measurements obtained from 193 MMSZ522BT1G
Zener Diodes. These diodes span two production lot
date codes, and electrical measurements which
characterize the operational behavior of these parts
are current-voltage (I-V) sweeps. Fig. 1 displays the
I-V curves from both production lots. From a visual
perspective, the data presents with an unremarkable,
relatively uniform distribution of results.

The primary goals of our analysis are to investigate
whether device behavior differs across production
lots and to tease out any other useful process related
statistical characteristics from this data set. This
paper employs techniques from functional data
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Figure 1: I-V curves from Zener diodes colored by
production lot

analysis (FDA) to provide a formal assessment of the
behavior of these devices.

Analysis of Electrical Device Data
A. Functional Data Analysis

Functional data vary continuously across an
independent variable. Because our data set of I-V
sweeps are generated by forcing voltage and
measuring the current, it is natural to treat these
curves as functional observations where current is
considered as a function of voltage. We can express
our data as y;=fi(t;), where i indexes the subjects and
j indexes the independent variable. In this paper, y
represents the current, t represents the voltage, and
the subjects correspond to the individual measured
devices.

B. Amplitude and Phase Distances

A key aspect of any analysis of functional data is the
characterization of two sources of variability. These
are amplitude, or y-axis, and phase, or X-axis,
variability. Ref. [1] details a method of separating
amplitude and phase variability and describes two
functional distance metrics — amplitude distance and
phase distance. These distances allow us to
understand how different two functions are from one
another in terms of amplitude and phase variability.
As an initial exploratory step in our analysis, we
compute the pairwise amplitude and phase distances
for the I-V curves. When visualized, the pairwise
distance matrices look similar. For this reason, we
show only the amplitude distances in Fig. 2. The top
left block of the matrix displays the distances
between devices in production lot 1 while the bottom
right block contains the distances for devices in
production lot 2. The off-diagonal blocks then
contain the between-lot comparisons (note that these
blocks are transposed versions of each other).

If the production lots were producing identical
devices, we would expect a nearly uniform matrix.
However, the bands of higher pairwise distances
observed in Fig. 2 indicate that there is a subset of
devices in production lot 1 whose I-V curves differ
substantially from the rest of the devices. This is an
informative result suggesting that more analysis
should be pursued to better understand what is
driving the observed differences.
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Figure 2: Amplitude pairwise distance

C. Functional Principal Components Analysis

In standard analysis of multivariate data, principal
components analysis (PCA) is a ubiquitous tool for
understanding the variability in the data and reducing
dimensionality [2]. These same goals are pursued for
functional data using functional principal
components analysis (FPCA). Implementation details
of FPCA can be found in chapter 8 of [3].

FPCA on the Zener diode measurements revealed that
the first functional principal component (FPC)
captures more than 99% of the variance in the data.
The first two FPCs, capture over 99.99% of the
variance. In Fig. 3, where the first two PCs are shown,
the interpretation of these components is clear. The
first component, denoted FPC1, describes the
variability of the devices in the reverse breakdown
region, identified in figure 1. FPC2 describes
variability in the forward region. While this
interpretation may not seem to provide much more
information than a visual inspection of the data, we
can learn a lot reducing the
dimensionality of the data.

By computing the inner product of a centered I-V
curve with an FPC, we obtain the corresponding FPC
score. Fig. 4 plots FPC1 and FPC2 scores for all [-V
curves. Two linearly separable clusters emerge
that reveal a clear distinction in the behavior of

more when

m_
— FPCH
FPC2
(.-_
o A —
#—r
5 % a4 6 i

Voltage (V)
Figure 3: Functional principal components

devices between the two production lots (note that
our implementation of FPCA is production lot
agnostic). Interpreting the FPCs, it appears that
relative to production lot 1, devices from production
lot 2 tend to have smaller absolute (i.c., less negative)
current values in the reverse breakdown region while
having larger current values in the forward region.
Clearly, this implementation of FPCA sheds light on
the specific device behavior influencing the
difference we have observed between the production
lots. In general, FPCA is a powerful method for
understanding the sources of wvariability in a
functional data set.
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Figure 4: Functional principal component
scores colored by production lot

D. Functional Regression

For a univariate or multivariate response variable, a
standard statistical approach to investigating the
effect of a factor on that response would be to use
some form of regression model. There are several
functional regression methods that can be used for the
same purpose when the response variable is
functional [3,4]. For our analysis, we use penalized
flexible functional regression [5]. Our model is
Ci(Viy)=B(Vy)+Bo+BLoti+erri(Vy) for device i and
voltage value j. Here, B(V}) is the overall mean and
By is the intercept. Note that Lot;=1 if device i comes
from production lot 2 and is 0 if it comes from lot 1.
With this variable encoding, B(V;;)+By is the mean of
the production lot 1 devices. We note that in this and
other functional regression methods, the regression
coefficients can be either scalar or functional. We
explored both these options and found that using a
functional coefficient did not add insight or improve
the model in any meaningful way. For this reason, the
only functional regression coefficient in our model is
the intercept.

Table 1 contains the estimated intercept and
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Table 1: Functional regression coefficient
estimates with standard deviations and p-values
Estimate | Standard | p-value
Error
Intercept | -0.007 <0.01 <0.0001
Lot2 0.002 <0.01 <0.0001
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Figure 5: Full data set of I-V curves with overall
mean from functional regression

production lot 2 coefficients along with their standard
errors and p-values. These p-values are interpreted as
in non-functional regression models. This model also
has an adjusted R’ value of 0.975, meaning that
97.5% of the variability in the data is explained by the
factors we have included in our model. This indicates
a very strong fit of the model to the data.
In Table 1, the intercept coefficient is interpreted as
the amount of current the overall mean is changed by
at each voltage value to arrive at the mean of the
production lot 1 devices. Similarly, the Lot2
coefficient is the amount of current added to the
production lot 1 mean to arrive at the production lot
2 mean. At the 0.01 level of significance, there is a
statistically significant difference in the behavior of
devices between production lots. Fig. 5 displays the
full data set with the overall mean plotted on top of
the I-V curves.
This regression analysis provides straightforward
estimates for the mean device behavior in each lot —
an important problem on its own [6]. More
importantly for our analysis, we have quantified the
effect of production lot on device behavior and found
that it is statistically significant.

Conclusion
We have applied three FDA techniques to the analysis
of a set of Zener diode devices from two production
lots. These methods have uncovered insights about

the effect of production lot on device behavior that
were not evident from a visual inspection of the data.
In future work we will use similar methods to analyze
a data set of Zener diodes that have been subjected to
an aging condition and measured over time in order
to quantify the effects of aging on the devices.

In addition to the methods used here, there are a host
of other FDA techniques that can be employed [3]. As
many types of electrical device data are functional in
nature, we advocate for the expanded application of
FDA methods in this community. As demonstrated in
this paper, such methods can provide principled

quantitative analysis and wuseful insights for
challenging data sets.
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