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Abstract 

This paper presents an assessment of electrical device 

measurements using functional data analysis (FDA) 

on a test case of Zener diode devices. We employ 

three techniques from FDA to quantify the variability 

in device behavior, primarily due to production lot 

and demonstrate that this has a significant effect in 

our data set. We also argue for the expanded use of 

FDA methods in providing principled, quantitative 

analysis of electrical device data. 

(Keywords: Electrical Device Modeling, Functional 

Data Analysis) 

Introduction 

The principled statistical analysis of electrical device 

data can yield important insights and influence 

decisions in numerous areas related to device 

technology and manufacturing. This paper describes 

the statistical analysis of a set of electrical 

measurements obtained from 193 MMSZ522BT1G 

Zener Diodes. These diodes span two production lot 

date codes, and electrical measurements which 

characterize the operational behavior of these parts 

are current-voltage (I-V) sweeps. Fig. 1 displays the 

I-V curves from both production lots. From a visual 

perspective, the data presents with an unremarkable, 

relatively uniform distribution of results.  

The primary goals of our analysis are to investigate 

whether device behavior differs across production 

lots and to tease out any other useful process related 

statistical characteristics from this data set. This 

paper employs techniques from functional data 

analysis (FDA) to provide a formal assessment of the 

behavior of these devices.  

Analysis of Electrical Device Data 
A. Functional Data Analysis 

Functional data vary continuously across an 

independent variable. Because our data set of I-V 

sweeps are generated by forcing voltage and 

measuring the current, it is natural to treat these 

curves as functional observations where current is 

considered as a function of voltage. We can express 

our data as yij=fi(tij), where i indexes the subjects and 

j indexes the independent variable. In this paper, 𝑦 

represents the current, 𝑡 represents the voltage, and 

the subjects correspond to the individual measured 

devices. 

B. Amplitude and Phase Distances 

A key aspect of any analysis of functional data is the 

characterization of two sources of variability. These 

are amplitude, or y-axis, and phase, or x-axis, 

variability. Ref. [1] details a method of separating 

amplitude and phase variability and describes two 

functional distance metrics – amplitude distance and 

phase distance. These distances allow us to 

understand how different two functions are from one 

another in terms of amplitude and phase variability.  

As an initial exploratory step in our analysis, we 

compute the pairwise amplitude and phase distances 

for the I-V curves. When visualized, the pairwise 

distance matrices look similar. For this reason, we 

show only the amplitude distances in Fig. 2. The top 

left block of the matrix displays the distances 

between devices in production lot 1 while the bottom 

right block contains the distances for devices in 

production lot 2. The off-diagonal blocks then 

contain the between-lot comparisons (note that these 

blocks are transposed versions of each other). 

If the production lots were producing identical 

devices, we would expect a nearly uniform matrix. 

However, the bands of higher pairwise distances 

observed in Fig. 2 indicate that there is a subset of 

devices in production lot 1 whose I-V curves differ 

substantially from the rest of the devices. This is an 

informative result suggesting that more analysis 

should be pursued to better understand what is 

driving the observed differences.  

Figure 1: I-V curves from Zener diodes colored by 

production lot 
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C. Functional Principal Components Analysis 

In standard analysis of multivariate data, principal 

components analysis (PCA) is a ubiquitous tool for 

understanding the variability in the data and reducing 

dimensionality [2]. These same goals are pursued for 

functional data using functional principal 

components analysis (FPCA). Implementation details 

of FPCA can be found in chapter 8 of [3]. 

FPCA on the Zener diode measurements revealed that 

the first functional principal component (FPC) 

captures more than 99% of the variance in the data. 

The first two FPCs, capture over 99.99% of the 

variance. In Fig. 3, where the first two PCs are shown, 

the interpretation of these components is clear. The 

first component, denoted FPC1, describes the 

variability of the devices in the reverse breakdown 

region, identified in figure 1.  FPC2 describes 

variability in the forward region. While this 

interpretation may not seem to provide much more 

information than a visual inspection of the data, we 

can learn a lot more when reducing the 

dimensionality of the data. 

By computing the inner product of a centered I-V 

curve with an FPC, we obtain the corresponding FPC 

score. Fig. 4 plots FPC1 and FPC2 scores for all I-V 

curves. Two linearly separable clusters emerge   

that reveal a clear distinction in the behavior of 

devices between the two production lots (note that 

our implementation of FPCA is production lot 

agnostic). Interpreting the FPCs, it appears that 

relative to production lot 1, devices from production 

lot 2 tend to have smaller absolute (i.e., less negative) 

current values in the reverse breakdown region while 

having larger current values in the forward region.  

Clearly, this implementation of FPCA sheds light on 

the specific device behavior influencing the 

difference we have observed between the production 

lots. In general, FPCA is a powerful method for 

understanding the sources of variability in a 

functional data set. 

D. Functional Regression 

For a univariate or multivariate response variable, a 

standard statistical approach to investigating the 

effect of a factor on that response would be to use 

some form of regression model. There are several 

functional regression methods that can be used for the 

same purpose when the response variable is 

functional [3,4]. For our analysis, we use penalized 

flexible functional regression [5]. Our model is 

Ci(Vij)=B(Vij)+B0+B1Loti+erri(Vij) for device i and 

voltage value j. Here, B(Vij) is the overall mean and 

B0 is the intercept. Note that Loti=1 if device i comes 

from production lot 2 and is 0 if it comes from lot 1. 

With this variable encoding, B(Vij)+B0 is the mean of 

the production lot 1 devices. We note that in this and 

other functional regression methods, the regression 

coefficients can be either scalar or functional. We 

explored both these options and found that using a 

functional coefficient did not add insight or improve 

the model in any meaningful way. For this reason, the 

only functional regression coefficient in our model is 

the intercept.  

Table 1 contains the estimated intercept and 

Figure 2: Amplitude pairwise distance 

Figure 3: Functional principal components 

 

Figure 4: Functional principal component 
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production lot 2 coefficients along with their standard 

errors and p-values. These p-values are interpreted as 

in non-functional regression models. This model also 

has an adjusted R2 value of 0.975, meaning that 

97.5% of the variability in the data is explained by the 

factors we have included in our model. This indicates 

a very strong fit of the model to the data. 

In Table 1, the intercept coefficient is interpreted as 

the amount of current the overall mean is changed by 

at each voltage value to arrive at the mean of the 

production lot 1 devices. Similarly, the Lot2 

coefficient is the amount of current added to the 

production lot 1 mean to arrive at the production lot 

2 mean. At the 0.01 level of significance, there is a 

statistically significant difference in the behavior of 

devices between production lots. Fig. 5 displays the 

full data set with the overall mean plotted on top of 

the I-V curves.  

This regression analysis provides straightforward 

estimates for the mean device behavior in each lot – 

an important problem on its own [6]. More 

importantly for our analysis, we have quantified the 

effect of production lot on device behavior and found 

that it is statistically significant. 

Conclusion 

We have applied three FDA techniques to the analysis 

of a set of Zener diode devices from two production 

lots. These methods have uncovered insights about 

the effect of production lot on device behavior that 

were not evident from a visual inspection of the data. 

In future work we will use similar methods to analyze 

a data set of Zener diodes that have been subjected to 

an aging condition and measured over time in order 

to quantify the effects of aging on the devices. 

In addition to the methods used here, there are a host 

of other FDA techniques that can be employed [3]. As 

many types of electrical device data are functional in 

nature, we advocate for the expanded application of 

FDA methods in this community. As demonstrated in 

this paper, such methods can provide principled 

quantitative analysis and useful insights for 

challenging data sets.  
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Figure 5: Full data set of I-V curves with overall 

mean from functional regression 

Table 1: Functional regression coefficient 

estimates with standard deviations and p-values 

 Estimate Standard 

Error 

p-value 

Intercept -0.007 <0.01 <0.0001 

Lot2 0.002 <0.01 <0.0001 

 


