An Assessment of the Laminar Hypersonic Double-Cone
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This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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In this paper, we investigate two experimental datasets of laminar hypersonic flows, in
vibrational and reactive non-equilibrium, over a double-cone geometry, acquired in CUBRC’s
LENS-XX expansion tunnel. These datasets have yet to be modeled accurately. A previous
paper suggested that this could partly be due to mis-specified inlet conditions. The authors
of this paper solved a Bayesian inverse problem to infer the inlet conditions of the LENS-XX
test-section and found that in one case they lay outside the uncertainty bounds specified in
the experimental dataset. However, the inference was performed using approximate surrogate
models. In this paper, we revisit the experimental datasets and perform inversions for the tunnel
test-section inlet conditions with a Navier-Stokes simulator. The inversion is deterministic and
provides uncertainty bounds on the inlet conditions under a Gaussian assumption. We find
that deterministic inversion yields inlet conditions that are at variance with what was stated
in the experiments. We also assess the usefulness of the uncertainty bounds provided by the
Gaussian approximation of the true posterior distribution, and find it marginally useful for
the inter-quartile range. We also present an a posteriori method to check the validity of the
Gaussian assumption for the posterior distribution. This paper contributes to ongoing work on
the assessment of datasets from challenging experiments conducted in extreme environments,
where the experimental apparatus is pushed to the margins of its design and performance
envelopes.

I. Nomenclature

= non-dimensional stagnation enthalpy of the flow

probability density function

non-dimensional Pitot pressure of the flow

surface pressure on the double-cone

surface heat flux on the double-cone

distance along the axis of the double-cone

= inlet velocity being inferred

inlet velocity, used for normalization; set to 103 m/s

inlet density being inferred

= inlet density, used for normalization; set to 10~*kg/m?>

Credibility Interval

inlet Mach number

Unit Reynolds number

inlet temperatures, translational and vibrational

model parameters to be inferred, i.e., an inlet flow condition {pc, Us}
inter-quartile range, i.e., the span between the 25" and 75" percentiles of a random variable
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I1. Introduction

EXPERIMENTAL datasets, meant for model validation, contain measurements of the phenomena that are the subject

of the experiment, as well as a detailed quantitative description of the experimental environment and apparatus (so
that the experiment may be modeled). The error/uncertainty in measurements that quantify the phenomena, as well as
the experimental environment, are also supplied. Model validation efforts usually take the measurements and their
(quantified) errors at face value. However, when simulating extreme environments, e.g., high enthalpy flows in shock
tunnels with large cross-sections, one is forced to employ novel techniques, instrumentation, and apparatus, whose
interactions may not be known very well, or which might be required to work at the edges of their operational envelope.
In such scenarios, the quantifications of experimental errors/uncertainties that accompany a (model) validation dataset
may be difficult to estimate. This causes complications when the dataset is used to validate a model — if the model
predictions and experimental measurements do not agree, it is difficult to judge whether it is due to a shortcoming of the
model or due to a mis-specification of the error/uncertainty bounds on the measurements in the experimental dataset.
Ref. [[1]] describes one such case when an experimental dataset of laminar hypersonic flow over a 25°/55° double-cone,
gathered in the Calspan-University at Buffalo Research Center’s (CUBRC’s) Large Energy National Shock Tunnel
(LENS-I) wind tunnel, was used to validate a Navier-Stokes model of the flow. The model predictions failed to match
experiments. The authors of Ref. [1]] simulated the flow in the LENS-I shock-tunnel (the design was made available
to them) and found that the inflow into the test section was in vibrational non-equilibrium (the total enthalpy of the
flow was 3.71 MK/kg). This was not known to the experimentalists, and was not reflected in the experimental dataset.
When the correct boundary conditions, i.e., vibrational non-equilibrium, were specified, model predictions had far fewer
problems matching experimental measurements [[1].

A similar problem was encountered in Ref. [2] when using double-cone data, collected in CUBRC’s LENS-XX
expansion tunnel, to validate SPARC (Sandia Parallel Aerodynamics and Reentry Code), a Navier-Stokes model for
non-equilibrium hypersonic flows. The experimental datasets contained pressure and heat flux measurements over the
same 25°/55° double-cone, but the flows in question had far higher total enthalpies (5.44 MJ/kg and 21.77 MJ/kg).
The uncertainties in the inflow conditions were provided as part of the experimental datasets. The authors created an
ensemble of inflow conditions consistent with the specified uncertainties and simulated flows over the double-cone, with
the aim of bracketing the measurements. They found that the distribution of model predictions did not agree with the
distribution of measurements — they sometimes overlapped partially but were frequently disjoint. This implied that
SPARC could not simulate some of the physics in the dataset. An obvious check would be to simulate the flow inside
LENS-XX and compare the predicted inlet conditions (alternatively, the boundary conditions imposed by SPARC) with
the specification that accompanied the validation dataset. However, the design details of the LENS-XX expansion tunnel
are not publicly known and, consequently, the simulation cannot be performed. In addition, it is known that the flow
inside LENS-XX is far more complex than in LENS-I; see Refs [3, 4] for a description. Ref. [5]] simulated the flow
inside LENS-X (the predecessor to LENS-XX) and found sections with steady and unsteady flows.

In order to address the problem of unknown inlet (inflow) conditions, Ref. [6] employed an inversion approach.
They assumed that the inflow was axisymmetric and then, conditional on pressure and heat flux measurements on the
fore-cone, as well as the total pressure and enthalpy of the flow, inferred the velocity, density and temperature at the
inflow of the test section. The inversion was Bayesian and used a Markov chain Monte Carlo (MCMC) method to
estimate the inflow conditions as a 3-dimensional probability density function (PDF). The PDF captured the uncertainty
in the estimates due to the limited nature of the measurements, the measurement errors, and the missing physics in the
SPARC model. For Case 1 (the 5.44 MJ/kg flow), they found that the measured and modeled PDFs were disjoint, but
the maximum a posteriori (MAP) estimate of the inflow conditions (loosely, the most probable estimate) fell within the
experimental uncertainty bounds. For the second case (the 21.77 MJ/kg flow, called “Case 4”), the MAP estimate was
clearly outside the experimental uncertainty bounds. However, these inferences were drawn using polynomial surrogates
for SPARC'’s predictions, a necessity due to the tremendous computational cost of MCMC. The polynomial surrogates
are themselves approximations of the SPARC model, and the estimated inflow conditions are affected by the accuracy of
the surrogates.

In this paper, we revisit the inference of the inflow conditions for Case 1 and Case 4 using the Navier-Stokes model
in SPARC (and not any surrogates). The inference is cast as a deterministic inverse problem and solved using an
optimization method that “tunes” the inflow conditions to maximize the agreement between the experimental data and
model predictions. The flow separates at a point on the fore-cone of the double-cone configuration, and, just as in
Ref. [6], we only use measurements that lie upstream of the separation point. A quantification of the uncertainty in
the estimated inflow conditions can be obtained by approximating the PDF (called the “posterior” PDF of the inflow
conditions) as a multivariate Gaussian, whose variance-covariance matrix is provided by the inverse of the Hessian of the



objective function, evaluated at the optimal point (inflow estimate which maximizes the match between measurements
and predictions). In this paper, we also assess the usefulness of the Gaussian approximation by comparing it to the
MCMC solution.

This paper has two main contributions. The first is the assessment of the inferences drawn in Ref. [6] regarding the
disagreement of inferred inflow conditions with that specified in the experimental dataset. Note that unlike Ref. [6],
the native Navier-Stokes model in SPARC (and not its surrogate) is used in this study. Our second contribution is an
assessment of the Gaussian approximation of the posterior distribution, available with all deterministic inverse solutions,
for uncertainty quantification in the highly nonlinear problems encountered in hypersonic flows. An additional novelty
of the paper is the first use of adjoint-based sensitivity analysis to solve an inverse problem in the reconstruction of a
hypersonic flow; to date, adjoint-based inverse solutions have been used extensively in design optimization and mesh
adaptation.

The paper is laid out as follows. In Sec. [T} we review the background literature on double-cone experiments and
modeling efforts, as well as adjoint-based sensitivity and inverse solutions. In Sec.[[V]we perform a grid-refinement
study and establish certain other numerical details. In Sec.|V] we formulate the inverse problem, and in Sec. our
results. We first perform an inversion using a dataset measured in LENS-I which has been successfully modeled,
and check whether our inversion yields inflow conditions that agree with those specified in the experimental dataset.
Thereafter, we proceed to Case 1 and Case 4. We conclude in Sec. |V_'Hl

III. Literature Review

A. The Double-Cone Problem

Double-cone experiments have been conducted in the LENS-I [7, 8] and LENS-XX [9] facilities. The hypersonic
flow sets up a complex shock pattern (see numerical Schlieren in Fig. [I] (left)), a separation zone, and complex
shock-shock and shock-boundary layer interaction downstream of the separation zone. The flow is laminar throughout.
The fore-cone is a 25° half-angle cone, which abuts a truncated 55° aft-cone. The fore-cone sets up an attached shock,
whereas the aft-cone creates a detached shock. The two shocks interact to create a triple point and a transmitted shock
that impinges on the aft-cone. The adverse pressure gradient set up by the transmitted shock feeds upstream through
the (subsonic) boundary layer and causes the flow over the fore-cone to separate at x ~ 0.05m. The separated flow
reattaches on the aft-cone. The separation zone, in turn, causes a separation shock that interacts with the transmitted
shock and modifies it. Due to the existence of triple points, the region near the intersection of the two cones contains
contact surfaces(vortex sheets), as well as a separation zone. These are clearly labeled in Fig. [T[left).
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Fig. 1 Left: A numerical Schlieren of the flow over a double-cone, taken from Ref. [6]. Right: A stretched grid
on which Computational Fluids Dynamics simulations were performed.



Double-cone experiments: Refs. 7, (8] describe double-cone experiments in the LENS-I shock tunnel. When the
experiments were modeled using the Navier-Stokes equations, it was found that the model over-predicted heat-flux but
did well with predictions of the pressure on the fore-cone, as well as the separation zone. Note that only one of the
experiments, called “Run 35 (see specifications in Table[T), was modeled under the assumptions of an axisymmetric
flow at the inlet of the shock tunnel that was also in vibrational and reactive equilibrium. However, it was later discovered
that the inflow into the test-section of the shock tunnel was in strong vibrational non-equilibrium and was, in addition,
frozen [[1]]. This discovery was made when the authors of Ref. [1]] simulated the flow inside the entire tunnel and
examined the flow state at the test-section inlet. This necessarily requires knowledge of the geometry of the nozzle,
which was made available to the authors. When the inlet flow conditions (henceforth, inflow conditions) were adjusted
to reflect vibrational non-equilibrium, Computational Fluid Dynamics (CFD) simulations using the Navier-Stokes model
for Run 35 matched experimental data quite well [[1]. The LENS-I experiments were conducted in a N, environment at
very low flow density and total enthalpy, and a perfect-gas model, with no reactions, was quite appropriate.

The double-cone experiments were also conducted in the LENS-XX expansion tunnel [9], where temperatures do
not exceed about 3000K [3]. Consequently, the thermochemical non-equilibrium issues that affected the LENS-I inflow
conditions do not arise. Six double-cone experiments at different flow conditions (total enthalpies and pressures) were
conducted. Two of these experiments, called Case 1 and Case 4, will be investigated in this paper and are summarized
in Table[T} Attempts to model these six LENS-XX double-cone experiments have met with varying levels of success.
We describe these next.

Modeling of double-cone experiments: Ref. [10] provides a good description of modeling studies of the LENS-XX
double-cone experiments, including visualizations of the flowfields. The authors showed that the accurate pressure
predictions (i.e., they match LENS-XX measurements) on the fore-cone could be achieved with both perfect-gas and
non-equilibrium flow models, but the heat-flux predictions were too low, even when accounting for measurement errors
(5% for surface pressure and 7% for surface heat-flux on the double-cone). The separation zone was predicted to be
smaller, primarily because of late separation. Studies have explored the correct thermochemical modeling approach to
adopt, often with conflicting results [[11}[12]. Not surprisingly, the high-enthalpy Case 4 shows the largest differences
in p(x) and ¢(x) predictions, depending on the choice of the thermochemical (equilibrium/frozen/non-equilibrium)
modeling of the flow, while Case 1 shows the least. Here p(x) and g(x) are the pressure and heat-flux on the double-cone
surface, and x is the axial distance from the double-cone nosetip. In all cases, it is easy to match the pressure on the
fore-cone well, while under-predicting the heat-flux. Aft of the reattachment point, no model does particularly well, with
errors increasing with the total enthalpy of the flow. In Ref. [[13] the authors examined whether a sophisticated model
for the coupling between vibrational and reactive (i.e., dissociation) non-equilibrium [[14] could bridge the gap between
measurements and predictions, but found that it worked no better than Park’s simple model [[15]. This lack of sensitivity
of the results to more sophisticated coupling between vibrational and chemical non-equilibrium has been corroborated
by other studies for the same LENS-XX double-cone experiments [[11}[16L [17]]. In addition, Ref. [[13]] corroborated
the findings of Ref. [10] inasmuch that pressure on the fore-cone could be predicted quite well, but the heat-flux was
under-predicted. The main consequence of changing the thermochemical model has been to change the size of the
separation zone [[11} 12} [16}[17]. The authors in Ref. [11] used thermochemical models whose parameter values were
computed from more fundamental simulations using forced harmonic oscillators and quasi-classical trajectory (QCT)
calculations, and obtained a very good comparison with the separation zone size for Case 4; however, they did not show
the performance of their model on the other experiments conducted in LENS-XX. However, researchers have also
studied whether catalytic effects could explain the disagreement between measurements and predictions [18]. They
found that even in the highest-enthalpy case (Case 4, see Table I)), catalytic effects were minor in the separation zone,
though they increased the heat-flux predictions aft of the reattachment point.

The six LENS-XX experiments have also been the subject of a “blind” modeling comparison, described in Ref. [19].
Here, five different CFD researchers attempted to model the experiments, with very different results. They disagreed
among themselves despite the fact that the constituent models were similar, and they did not agree with the measurements
either. The simulations were mesh-converged, so the different outcomes of the modeling effort were attributed to small
differences in their numerical methods. All models under-predicted the size of the separation zone, as well as the
heat-flux on the double-cone surface. One possible cause of the differences between the five CFD modeling efforts
could be the role played by state (or slope) limiters used by the researchers, which could lead to excessive numerical
dissipation. This numerical issue was explored in Ref. [18]], which found that the effect of numerical viscosity was too
small to bridge the gap between model predictions and experimental measurements. All of these studies ignored the
effect of uncertainties in the inflow conditions, though Ref. [10] did check whether uncertainties/errors in measurement
could be used to explain the mismatch between model predictions and experiments.



Table 1 Freestream conditions and their uncertainties (‘“Error’’). Run 35 was conducted in the LENS-I tunnel
and is described in Refs. [1,24]. Cases 1 and 4 were conducted in LENS-XX and are described in Ref. [10].

Test Us Poo Tw T, Re M, ho Ppivot  Gas
m/s) (g/m’) (K) (K) (m™) (MJ/kg)  (kPa)
Error (£3%) (£7%) (+3%) (£3%)  (£5%) (£5%)

Run35 2545 0.5848 9827 2562 143x10* 12.59 3.71 3.55 N>
Case 1 3246 0.499 175 175 0.14x 10° 12.2 5.44 5.1 Air
Case4 6479 0.984 652 652  0.20x10° 12.82 21.77 39.5 Air

Uncertainty quantification and double-cone experiments: The difficulties with the LENS-XX experiments
match those encountered with LENS-I, and it is natural to wonder whether a mis-specified inflow condition could
again be the cause. With this in mind, the authors of Ref. 2] performed a forward propagation of input uncertainties,
as described in Sec. [l The aim was to test whether the distribution of pressure and heat-flux predictions from the
ensemble bracket the experimental measurements. They could not, but a +£15% perturbation of the inflow condition
at the test-section managed to “cover” the experimental data. This raised the possibility that modifying the inflow
conditions, outside of the limits placed by the stated experimental uncertainty bounds, could allow CFD simulations to
reproduce experimental measurements.

The most straightforward way to test this possibility would be to simulate the flow in the LENS-XX experiments,
exactly as done for LENS-I in Ref. [1]], and examine the conditions at the test-section inlet. However, the geometry of
the LENS-XX nozzle is not public. Instead, in Ref. [6], the authors developed an inference framework, targeted the
three experiments listed in Table[T} and inferred the inflow conditions (density, velocity, temperature and vibrational
temperature) based on them. The authors found that the MAP estimates for density and velocity were well within the
stated experimental error bounds for Run 35, but not for Case 1 and Case 4. They also found that the measurements
used in the inference (surface pressure on the double-cone p(x), surface heat-flux g(x), the total enthalpy of the flow Ag
and the Pitot pressure Ppj,) carried very little information on the inflow temperature of the flow which, consequently,
could not be estimated. They also investigated whether shortcomings of the thermochemical models could explain the
model versus experiment disagreements and found weak evidence for it. However, when the “correct” inflow conditions,
as inferred from the fore-cone measurements, were used in CFD predictions, the disagreement between predictions and
measurements remained downstream of the separation point, implying that while Bayesian inference found some of the
causes of modeling errors, it was far from a comprehensive solution.

Previous uncertainty quantification studies of double-cone experiments performed by (some of) the authors of the
current paper [2, 6], used SPARC, a Navier-Stokes simulator that is described in detail in Ref. [6]. It is a second-order
accurate finite-volume compressible flow simulator. It has been formulated for reacting gases in thermochemical
non-equilibrium. It can accommodate multiple gaseous species, per a chemical mechanism, and evolves them separately.
In this paper, we use a 5-species mechanism for air, with 17 reactions [20]. SPARC accommodates structured and
unstructured meshes, though we only use the former for double-cone simulations. A MUSCL scheme [21] and a
minmod limiter is used for stability for shock-laden flows. SPARC solves the unsteady form of the governing equations,
and we simulate over a long period of time, at first-order accuracy in time, to reach steady-state (as required in this
paper). Grid resolution [22]] and solution verification [23] studies have been performed on the models in SPARC.

B. Adjoint-Based Inverse Solvers

Adjoint-based sensitivity analysis is used to compute gradients for partial differential equation-constrained
optimization problems (strictly, they can also be used for problems governed by algebraic systems), including design and
inverse problems. Adjoint sensitivity analysis has been used for solving inverse problems for a wide range of applications,
including fluid dynamics of turbo-machinery components dynamics [25]]. For hypersonic CFD, adjoint-based sensitivity
analysis has been [26], seismic wave propagation [27], and ice sheet used for design optimization, adaptation, and
uncertainty propagation, but not to solve inverse problems to the author’s knowledge.

NASA has two CFD codes which support adjoint-based design optimization and mesh adaptation for inviscid and
viscous hypersonic flows. CART3D, a Cartesian grid inviscid flow solver, leverages the adjoint for optimization and
mesh adaptation on a wide range of geometries and flight conditions [28]]. CART3D has been applied to numerous
inviscid hypersonic flows including those around reentry capsules [29] and asteroids [30]. Another NASA solver,



FUN3D, has an adjoint capability that has been used for shape optimization and mesh adaptation on a wide range of
viscous hypersonic flows, including non-equilibrium flows [31433]]. It is a discrete adjoint capability which leverages
hand-differentiated Jacobians for verification and validation purposes [32].

The adjoint capability of Stanford University’s SU2 open-source CFD solver has been demonstrated on a range of
inviscid and viscous hypersonic flows [34]. Initially, SU2 leveraged a continuous adjoint for mesh adaptation and shape
design of reentry vehicles and scramjet inlets [35H37]], but more recent work leverages a discrete adjoint capability
(38 139].

Outside of SU2 and NASA, recent work by Damm et al. demonstrated a discrete adjoint solver for scramjet inlet
design [40]]. Finally, Lockwood et al. developed and demonstrated a discrete adjoint to solve optimization problems as
part of uncertainty propagation studies on various flow field properties in non-equilibrium hypersonic flows around bluff
bodies [41-43]].

IV. Sensitivity Analysis

In this section, we describe the effect of grid resolution on the pressure p(x) and heat-flux ¢ (x) on the surface of the
double-cone, as well as on their sensitivities S, to perturbations in inlet conditions, @ € {pc, Uco, Too, Ty, }- We define
the sensitivity S, as

Sa=292 )

Z o«

where Z € {p(x), q(x)} are two of four Quantities of Interest (Qol) in this paper. Thus, this is Local Sensitivity
Analysis, with the gradients in Eq. [T]computed for the nominal test-section inlet conditions tabulated in Table[T] The
method for computing these gradients is described in Appendix [A] The other two Qols are the total enthalpy 4o and Pitot
pressure Ppi of the incoming flow, both of which are independent of the mesh resolution. The flow is assumed to be
axisymmetric, and we consider three different grids viz., 128 x 256 (called the “Coarse” mesh), 256 x 512 (“Medium’
mesh) and 512 x 1024 (“Fine” mesh). These are the same meshes which were used in the grid resolution studies in
Ref. [22].

Fig.|2| (top row) plots the surface pressure p(x) and its sensitivities on the left and the surface heat-flux (and its
sensitivities) on the right. The computations are performed on the Fine mesh using the inlet conditions corresponding to
Case 1. A S-species 17-reaction chemical mechanism is used, and the model can accommodate flows in vibrational
non-equilibrium. The point where the flow separates, at x = 0.065m is denoted with a vertical line. The Qol is plotted
with a solid line, and is represented by the y-axis; the sensitivities are plotted with dashed lines and are represented by
the 2nd y-axis. We see that p(x) is constant in the laminar, attached flow region, as are its sensitivities. In contrast,
g(x) o« x~ /2 though its sensitivities are also constant upstream of the separation point. Downstream of the separation
i.e., of the vertical line, we see significant variations in the sensitivities of p(x) and g(x) primarily due to reattachment
of the separated flow and its interactions with complex shock reflections. In the bottom row of the same figure, we plot
the same Qols and their sensitivities, but computed on the Coarse mesh. We see large differences in the sensitivities
downstream of the separation point, but not upstream of it. This is not surprising since small changes in mesh resolution
can change the location where flow or shocks impinge on a surface. In addition, we see that the sensitivity with respect to
temperature, i.e., St._, is very small compared to the sensitivities with respect to ps and Us. This is not very surprising
either, given that most of the energy in the incoming hypersonic flow is kinetic, not thermal.

The figure leads us to two conclusions:

1) Since the sensitivity of p(x) and ¢(x) to T, is so small, it will be infeasible to infer it (i.e., 7o) from surface
measurements on the double-cone (an observation also borne out in Ref. [6]). Consequently, we will not include
it as a quantity to be inferred, making our inverse problem a two-dimensional one, i.e., we estimate (pco, Uso).

2) Given the immense changes in sensitivities downstream of the separation zone due to changes in grid resolution,
our inverse problem will use only those model predictions that lie upstream of the separation region, i.e.,
x < 0.065m for Case 1. In addition, since p(x) and g(x) show peaked values downstream of the separation
points, any comparisons with measurements will be susceptible to changes in grid resolution.

The computations in this paper are performed on the “Fine” mesh. The mesh is a stretched one (Fig. [I] (right)), with

grid points clustered near the double-cone surface.
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Fig. 2 Top: Predicted pressure p(x) (left) and heat-flux g(x) (right) for Case 1, plotted with a green line.
Predictions were obtained on the Fine mesh. The point of flow separation is denoted with a vertical line. On the
second y-axis we plot the sensitivity S, of the relevant quantity of interest w.r.t. (0, Uo, Teo, Ty, ). Bottom: The
same plots but computed on the Coarse mesh.

V. Formulation of the Inverse Problem

In this section, we pose the inverse problem for the flow density (p) and velocity (Us) at the test-section inlet,
conditional on pressure (p(x)) and heat-flux (g(x)) measurements, as well as the total enthalpy (%) and Pitot pressure
(Ppitor) of the incoming flow. Fig.[2]plots the pressure p(x) and heat-flux g (x) on the double-cone surface for Case 1.
The point of flow separation is also plotted with a vertical line. We employ only those measurements that are upstream
of the separation point, since the flow physics there is well understood. The probes (sensors) that collect measurements
in this part of the flow are referred to as the “calibration” probes. Fig.[?]also shows that while the pressures at the
calibration probes are constant, the heat-flux ¢(x) shows a variation in space. In addition, p(x) and g(x) assume very
different values, and need to be scaled down to the same order-of-magnitude to be usable in an inverse problem.

For pressure, the scaling s, is defined as the reciprocal of the mean of all measured pressures p;,i = 1...N,, where
N, is the number of pressure calibration probes. Henceforth a tilde ("~") denotes a measured quantity. Since the heat-flux
g(x) varies as x~ /2 (see Chapter 9 in Ref. [44])), we compute a distance-weighted Q (x;;u, y) = q(x;;u, y) X /x; which
is approximately constant over the attached laminar flow over the fore-cone. The scaling s is defined as the reciprocal
of the mean of Q;,i=1.. .Ng. N is the number of calibration probes for heat-flux measurements. The scalings sp,
and sp are the reciprocals of ho and Ppiso;. Ng and N, vary for the three experiments in Table N, is 5 for Run 35, 3
for Case 1, and 4 for Case 4, while N is 9 for Run 35, 15 for Case 1, and 13 for Case 4.



Posing the optimization problem: Since the problems of interest are steady-state flows, we consider the following
deterministic optimization problem,

mying(u,y) =0 s.t. f(u,y) =0, 2

where u € R" is the discrete flow solution consisting of the unknown degrees-of-freedom across the mesh, y € R™ is a
set of model parameters (for us y = {peo, Us}), f : R” X R — R" is the discretized residual, and g : R" x R — R*
is a scalar-valued objective function. While SPARC implements several discretization approaches, this work focuses
exclusively on the cell-centered finite volume approach using block-structured meshes, in which case u contains the
value of the degrees-of-freedom at each cell center (density of each chemical species, flow velocity, temperature, and
molecular vibration temperature), and f is the finite volume residual. The objective function g quantifies the misfit
between simulation quantities-of-interest and experimentally measured values:

Nq Np
g(,y) = Y [50(Qxsu(») = 0]+ > [sp(p i u () = )]+ [0 (ho(¥) = o) | + [sP (Ppitor (¥) = Priror) |-
1

i=1 i=
3)
Here Q(x;;u(y)) and p(X;;u(y)) are the (distance-weighted) heat flux and pressure computed at a set of probe
locations {x;} and {¥;}, respectively (the probe locations are not, in general, the same), iy(y) is the total enthalpy of
the flow, Ppi;o: () is the Pitot pressure of the flow, Qi, Dis fzo, and Pp;;; are the corresponding measured values, and
s, Sp, Sp and sp are scaling values chosen for each problem to equilibrate the contribution of each term to the overall
objective function.
Equation (2) falls into the category of PDE-constrained optimization, for which numerous methods have been
developed in the literature. In this work, we focused on the so-called reduced space approach that transforms Eq.
into an unconstrained problem

myinh(y), h(y) = g(u(y),y) s.t. f(u(y),y) =0 “4)

where evaluation of A(y) first involves solving the nonlinear equations f(u(y)) = 0 for u, then evaluating the original
objective function g(u(y)). Under suitable differentiability assumptions for f and g, the corresponding reduced gradient

can be computed as
ar\" ag\" ar\" ag\"
v =—|= - Lo == ===
o ==(5) we (3] o (G (3 ®

which involves solving a single linear system for the adjoint variable w € R". A variety of optimization approaches are
available for solving Eq. {@). In this work, we use the truncated conjugate gradient method with trust-region globalization
[45 Ch. 4] and BFGS Hessian approximation [45, Ch. 6] as provided by the ROL package [46].

Given a set of inflow conditions y, each step of the optimization method requires computing a new steady-state
solution u satisfying f'(u, y) = 0. Due to numerical difficulties in computing these steady-state solutions, SPARC employs
implicit time integration methods, starting from an initial uniform flow, to compute them by solving Mu + f(u,y) =0,
where M € R™" is the mass matrix, until steady-state is reached with i = 0. These equations are discretized using the
first-order Backward Euler (BDF1) time discretization, with the resulting nonlinear equations solved at each time step
using Newton’s method based on an approximate Jacobian matrix that does not include second-order stencil terms nor
viscous cross terms. Typically, these systems are only approximately solved by only applying a small, fixed number of
Newton iterations, and thus is not time-accurate.

Computing sensitivities/gradients: Once a steady-state solution is computed, the objective function gradient
is then given by Eq. (5). We employ Automatic Differentiation (AD) provided by the Sacado package [47-49] to
analytically compute 0 f/dy, dg/dy, (0 f/0u)v and (dg/du)v for any vector v € R" without hand-coding. Using this
capability, we then employ graph coloring [S0H52] provided by the Zoltan package [53]] to construct the true Jacobian
0 f /du, which is then explicitly transposed to construct the adjoint operator (3 f/du)”. Since the heat-flux and pressure
computations involve a similar stencil as the finite volume residual, the same coloring procedure is used to construct
(0g/0u)”. While numerous solver strategies are available for solving Eq. , in this work we apply GMRES [54]]
using a block tri-diagonal/line implicit solver [[55] applied to the transpose of SPARC’s approximate Jacobian as a
preconditioner. Due to ill-conditioning of the true adjoint matrix, we furthermore apply multiple steps of iterative
refinement to obtain a solution with small residual. Details of the adjoint calculation are in Appendix



Estimation of the Gaussian posterior: Under the assumptions that the heat-flux, pressure, total enthalpy, and
Pitot pressure at the calibrated values differ from the experimental measurements by additive, Gaussian noise, and their
dependence on the calibrated parameters is approximately linear in the vicinity of the optimal parameter values, the
posterior of the calibrated parameters is approximately Gaussian, and solution of Eq. (2) is equivalent to a maximum
likelihood estimation procedure for the mean of the posterior. It is straightforward to show the covariance of the
posterior is then given by the inverse Hessian of the negative log-likelihood, i.e., the objective function Eq. (3). Even
if the posterior distribution is not a Gaussian, it can be approximated as one, provided the uncertainty is small (see
Appendix A of Ref. [56] for a derivation, including the use of finite-difference Hessians to approximate non-Gaussian
distributions as Gaussians). At the completion of the calibration process, we estimate the Hessian through a first order
finite difference approximation, differencing the gradient Eq. with a relative finite difference step size of 1077,
and then compute its inverse through Gaussian elimination. The relative finite difference step size was determined
empirically, with successively smaller step sizes until the Hessian became insensitive to it.

A discussion of the posterior distribution is incomplete without a prior. Our inversion scheme is unconstrained, as
we suspect that {p«, Us } may lie outside the bounds of the measurement errors specified by the experimental dataset,
but have no principled way of deciding how large the deviation may be. In a Bayesian interpretation, one may state we
specify a non-informative prior e.g., a uniform distribution with infinite bounds or a Jefferey’s prior on the mean of the
Gaussian posterior distribution.

VI. Results

A. Verification of the Inversion Method using Run 35

We first show the utility of our inversion technique, described in Sec. [V] to estimate the inlet conditions of the
test-section, using pressure and heat-flux measurements on the double-cone. Run 35 is used to test the utility of the
inversion technique because (1) the flow has been successfully modeled [[1]], i.e., the stated experimental conditions can
reproduce experimental measurements and (2) the experiment was conducted in an N, environment, which, along with
its low total enthalpy (see Table[I)), ensures that complications due to dissociated and reactive flow do not arise. Note that
the flow conditions stated in Table[I]are at variance with the original paper where the experiment was first described [[7].
The reason is as follows. The inflow conditions for Run 35 (also called Case D in Ref. [7]) were computed from shock
tunnel measurements under the assumption that the flow was in equilibrium i.e., 7o, = 7,,. When the authors of Ref. [1]
simulated the flow inside the nozzle of the LENS-I shock tunnel(where Run 35 was conducted), they found that the flow
entering the test section was in vibrational non-equilibrium i.e., s # T, and frozen, i.e., the vibrational energy was
partitioned out and did not play much of a role in the pressure and heat-flux measurements on the double-cone. The
frozen flow inflow conditions are in Ref. [1] and are used in this paper, and the flow model assumes an ideal gas model.
In addition, the surface temperature of the double-cone was maintained at 296.11 K, instead of 300 K for Cases 1 and 4.

This problem has also been solved using surrogate models and MCMC in Ref. [6]], and we compare the exact
posterior distribution from the MCMC solution versus the one obtained from deterministic inversion via Gaussian
assumptions. In Fig. 3| top left), we plot the joint (pco/Pnorms Us/Unorm) PDF from the MCMC as gray symbols, with
the Gaussian PDF from the deterministic inversion overlaid as contours. The MAP estimate (from the MCMC solution)
and the optimal one (from the deterministic inversion) are also plotted. In Fig. [3](bottom left) we plot the PDFs from the
MCMC and Gaussian posteriors for the normalized inflow density. The Gaussian posterior PDF is too wide to fit in the
figure and appears as a horizontal line. In Fig. [3(top right) we plot the PDFs for the normalized inflow velocity and see
the large discrepancy between the MCMC and Gaussian PDFs. The nominal inflow conditions (from Ref. [1]), the
MAP values from MCMC and the optimal value from the deterministic inversion are also plotted and agree well.

In Table[2] we summarize the posterior PDFs and compare with the experimental specification. We see that mean and
median values for the normalized inflow density and velocity, as computed using MCMC and our inversion capability,
are very close to each other and certainly well within the experimental error bounds. The inter-quartile range (IQR) for
Uco/Uynorm as computed using MCMC and our method are comparable, but the difference becomes very evident at
the tail of the distribution, i.e., 90% CI, where the thin-tailed Gaussian distribution incurs a large error; the true (i.e.,
MCMC) posterior is far more compact. In the case of poo/Pnorm, Which is more difficult to infer, the IQR and 90% CI
computed using our new method are too large to be useful.

We conclude that the deterministic inversion can infer inflow conditions correctly, i.e., within the experimental error
bounds, and within the IQR and 90% CI computed from MCMC'’s posterior distribution, if the model is capable of
computing the flow. The IOR computed from the Gaussian approximation of the posterior is comparable for inflow
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Fig. 3 Gaussian posterior PDFs from the deterministic inversion, compared to the ones from MCMC, for
Run 35. Top left: Joint (po/0norm> Uso/Unorm) PDF from MCMC plotted with gray symbols overlaid with
contours from the Gaussian PDF. The MAP estimate and the Optimal from the deterministic inversion are also
plotted. Bottom left: Marginal posterior PDFs for o /05.0rm, from MCMC and the Gaussian approximation
from the deterministic inversion. The Gaussian approximation is too wide and appears as a straight line. The
nominal/experimental specification (“Nompelis”; dotted vertical line), the MAP estimate (‘“MAP”’; solid vertical
line) and the optimal estimate (“Opt”; vertical dashed line) from deterministic inversion are also plotted, and are
close. Top right: The PDFs from MCMC and deterministic inversion, for the normalized inflow velocity (zoomed
in). Bottom right: The same as the figure above, but zoomed out to show the extent of the Gaussian posterior
distribution.

quantities that can be inferred with confidence (Us [Uporm in our case), but the 90% CI is overly wide. For inflow
quantities that are difficult to estimate from the double-cone measurements (Pco | Prorm in our case), only the mean
estimate is useful, with both the IQR and 90% CI being overly wide.

B. Case 1

Having tested our inversion capability on low-enthalpy Run 35, which had been previously modeled numerically [1],
we proceed to Case 1. Case 1 is of moderate enthalpy (see Table[I)), and we model it with a five-species, 17-reaction
mechanism and assume vibrational non-equilibrium, i.e., the governing equations have two separate temperatures, one
each for translational and vibrational energy. The flow at the inlet is assumed to be in vibrational equilibrium (7, = T;,).
The experiment was conducted in the LENS-XX expansion tunnel. An inversion for the inflow conditions has been
performed for this experimental dataset, using Bayesian inference, surrogate models, and MCMC [6]. The study found
that the inferred inflow density (MAP value) was within the stated experimental error bounds but the inferred inflow
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Table 2 Summarization of posterior PDFs for po/0norm and U /Unorm for Run 35. The experimental
specification is also provided. The uncertainty in the experimental measurements is 7% for inflow density and 3%
for inflow velocity. p,o,n = 1.0 x 10”*kg/m> and U,,,,,, = 1.0 x 10°m/s. IQR stands for Inter-Quartile Range
and CI for Credibility Interval.

Summary Poo/ Prorm Uco/Unorm

MCMC Deterministic Experiment ‘ MCMC Deterministic Experiment
Mean 5.83 5.89 5.848 (5.43, 6.26) 2.548 2.506 2.545 (2.47,2.62)
Median 5.82 5.89 2.55 2.506
IQR (5.62,6.03) (4.24,7.54) (2.5,2.6) (2.32,2.69)
90% CI (5.47,6.21) (1.88,9.9) (2.44,2.65)  (2.06,2.95)

velocity coincided with the 90% CI.

In Fig. 4] we plot the joint (e /Pnorm» Uso/Unorm) PDF from the MCMC solution in Ref. [6] (gray points), and
compare it with the bivariate Gaussian distribution obtained using our deterministic inversion method. We see much the
same behavior as in Sec. In the joint distribution plot, we see that the MAP estimate from the MCMC solution and
the optimal one from our new method are quite close. The Gaussian distribution for Us, /Uy 1 too wide compared to
the PDF obtained from MCMC. In the case of peo/0norm, the Gaussian distribution is too wide to be useful, whereas
the PDF from the MCMC solution provides some bounds on the estimated inflow density.

It is in the summary of the posterior distributions, in Table 3] that the difference between the MCMC solution and
our current inversion becomes clear. The optimal estimate for Ue /Uy,or1m, 18 Well outside the experimental bounds, as are
the mean and median computed from the MCMC solution. The optimal peo/pnorm computed using our deterministic
inversion is also outside the experimental error bounds, though the mean and median from the MCMC solution falls
inside them. The IQR and 90% CI from the Gaussian approximation, for p/Onorm, are too wide compared to the
MCMC solution, and are unphysical (too low a density); this is similar to Sec. For U /Uyorm, the IQRs are
somewhat comparable but the 90% CI from the Gaussian posterior is too wide.

In Fig. [5] we plot the pressure and heat-flux predictions using the nominal and estimated inflow conditions. The
measured values are also plotted. It is clear, and unsurprising, that the estimated inflow conditions accurately predict the
pressure and heat-flux at the calibration probes. However, when comparing with all the probes, the nominal inflow
conditions provide a better agreement. This is best captured by the root mean square error (RMSE) of the predictions
(versus the measured values) provided in Table The predictions at the ‘“calibration” probes show unequivocal
improvement when computed with the estimated inflow conditions, while the opposite is true when all the probes are
considered (most of the probes lie on the aft-cone where complex shock interactions, flow separation and re-attachment
take place). Since the flow over the fore-cone is simple (attached and laminar), this points towards serious model-form
error. This is corroborated by Fig. 5] (left) which shows the large discrepancy between predicted and measured pressure,
regardless of the inflow conditions used for computing the predictions.

To conclude, both the MCMC and our deterministic inversion suggest that the experimental specification of the
inflow velocity may be erroneous, i.e., the flow at the inlet is be faster than stated and lies outside the experimentally
specified range. The inference of the inflow density is rather unclear, as MCMC and the deterministic inversion provide
opposite suggestions, with our current estimate lying well outside the experimental measurement error bounds. There is
significant model-form error and the predictions on the aft-cone show large errors, regardless of the inflow conditions
used to compute them.

C. Case 4

Finally, we address the high-enthalpy Case 4 (see Table [I] for the flow conditions). The flow is modeled with a
5-species, 17-reaction mechanism and is assumed to be in vibrational and reactive non-equilibrium. The inflow is
assumed to be in equilibrium i.e., 7o, = T,,_. The flow has extensive regions of vibrational and chemical non-equilibrium
in the vicinity of the double-cone [10]. This experimental dataset has also been studied using Bayesian inference in
Ref. [6], which found that the most probable value of both the inflow density and velocity (i.e., the MAP estimate) lay
outside the experimental error bounds supplied with the dataset. However, since the Bayesian analysis was performed
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Fig. 4 Gaussian posterior PDFs from the deterministic inversion, compared to the ones from MCMC, for Case
1. Top left: Joint (0o /Pnorm> Us/Unorm) PDF from MCMC plotted with gray symbols overlaid with contours
from the Gaussian PDF. The MAP estimate and the Optimal from the deterministic inversion are also plotted.
Bottom left: Marginal posterior PDFs for p../0,0rm, from MCMC and the Gaussian approximation from the
deterministic inversion. The Gaussian approximation is too wide and appears as an approximately horizontal
line. The MAP estimate (“MAP”; solid vertical line) and the optimal estimate (“‘Opt’’; vertical dashed line) from
deterministic inversion are also plotted, and are close. Top right: The PDFs from MCMC and deterministic
inversion, for the normalized inflow velocity. Bottom right: The same as the figure above, but zoomed out to show
the extent of the Gaussian posterior distribution.

using surrogate models, we repeat it here using exact, if deterministic inversion, with an approximate Gaussian posterior
distribution

In Fig.[6| we plot the joint PDF of (peo/Pnorms Uso/Unorm) from the MCMC as gray sample points. The bivariate
Gaussian distribution from the deterministic inversion is plotted with contours. We see that the optimal point from
the deterministic inversion is close to the MAP value (Fig. [6](top left)). The marginal distribution from MCMC for
Uso/Unorm bears some resemblance to the Gaussian approximation from our deterministic inversion (Fig. [6] (top right)),
and the mean is very close to the MAP value. In Fig.[6] (bottom left) we plot the marginal density of peo/Pnorm from
MCMC, as well as the Gaussian approximation. The MAP value is close to the mean of the Gaussian, but the Gaussian
is too wide. Comparing with Case 1 (Sec.[VIL.B), we see that the Gaussian approximation resembles the MCMC solution
much better in Case 4.

In Table[5} we summarize the posterior distributions from MCMC and deterministic inversion and compare with
experimental results. In case of Us/Uporm, the mean from MCMC and deterministic inversion, as well as the MAP
value from MCMC (which is very close to the mean of the Gaussian posterior) lie outside the experimental error bounds.
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Table 3 Summarization of posterior PDFs for po/0norm and Us/U,orm for Case 1. The experimental
specification is also provided. The uncertainty in the experimental measurements is 7% for inflow density and 3%
for inflow velocity. p,o,n = 1.0 x 10”*kg/m> and U,,,,,, = 1.0 x 10°m/s. IQR stands for Inter-Quartile Range
and CI for Credibility Interval. Note that the MAP value for inflow velocity in the MCMC solution is different
from the mean, and is actually quite close to the mean of the Gaussian approximation.

Summary Poo/ Prorm Uco/Unorm

MCMC Deterministic Experiment ‘ MCMC Deterministic Experiment
Mean 4.96 4.33 4.999 (4.64, 5.34) 3.44 3.54 3.246 (3.15, 3.34)
Median 4.95 4.33 3.45 3.54
IQR (4.6,5.31) (2.86,5.79) (3.36,3.53) (3.28,3.79)
90% CI (4.33,5.64)  (0.73,7.96) (3.21,3.65) (2.92,4.16)

This also holds true for pe | Pnorm, indicating that the inferred inflow conditions do not agree with the stated ones in the
experimental dataset. In this respect, this outcomes tallies with the one from the previous work [6|]]. Comparing the
Gaussian marginals with their MCMC counterparts, we see that the IQR computed from the Gaussian approximation
of Uso /Uporm 1s somewhat similar to that from MCMC, but the 90% CI is too wide. For pe/0norm, the Gaussian is
simply too wide to be useful. Again, we see that variables that can be inferred with moderate uncertainty (Us /Uporm in
our case) will admit a useful Gaussian approximation.

D. Discussion

The results above show that our deterministic inversion method infers inflow conditions (the mean of the Gaussian
posterior distribution) that matches the inferences drawn with MCMC in Ref. [6]. For Run 35, which was conducted in
the LENS-I shock tunnel and has been modeled successfully, the inferred inflow conditions lie within the experimental
error bounds of the inflow specification that accompanied the dataset. For the LENS-XX experiments, which have
yet to be modeled with good accuracy, our inversion method leads us to believe that the inflow conditions may have
been mis-specified in both experimental datasets. The Bayesian analysis in Ref. [6] reaches much the same conclusion
for Case 4, but the opposite one for Case 1. However, this conclusion is dependent on the accuracy of the surrogate
models of the Navier-Stokes flow simulator, which could be the reason for this disagreement. In contrast, our method
uses the Navier-Stokes simulator natively. The studies above also show that the Gaussian approximation of the
posterior distribution is not very accurate. When a quantity can be inferred with some confidence, e.g., Us/Unorm, the
approximate Gaussian posterior can provide a useful IQR (in comparison to MCMC), but the tails of the distribution
e.g., 90% CI, are always too large to be useful. The usefulness of a Gaussian approximation to the posterior distribution
when the uncertainty in a quantity is small is well-known (see Ref. [56]], Appendix A) and its applicability can be
monitored, without access to the true posterior distribution from MCMC, using the methods in Ref. [57]. Next, we
apply these methods to check the appropriateness of the Gaussian posterior assumption for our problem.

Checking the Gaussian assumption: The check for the appropriateness of a Gaussian assumption for the posterior
distribution is based on cross-validation arguments. The inflow estimates discussed above were drawn from N, + N, +2
observations, corresponding to N, calibration probes for pressure, N, for the heat-flux, the total enthalpy /¢ and Pitot
pressure Ppjio;. Consider estimating inflow conditions (p*, U*) using a subset of the observations (in our case, 75% of

Table 4 Root-mean-square error (RMSE) for predictions of pressure and heat flux, using the nominal and
estimated inflow conditions. The optimized inflow conditions did not improve predictions at all probes.

Variable Calibration probes All probes
Nominal Inferred Nominal Inferred

Pressure (N/m?) | 2.6x 10" 1.46x10' | 1.8x10° 1.9x103
Heat flux (W/m?) | 7.6 x 10* 1.25x 10* | 8.68 x 10* 1.5x 10’
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Fig. 5 Predictions of pressure (left) and heat flux (right) using the optimized (blue) and nominal (red) values
of (P, Uss) for Case 1. The measured values at the probes are also plotted. Calibration does not improve the
predictive skill of the model for the full flow, though the predictions are far better for the region used to estimate
the inflow conditions.

the observations), selected randomly. This can be repeated K times, using a different, randomly selected subset of the
observations each time, to yield K different set of inflow estimates, (p*, U*)x, k = 1... K. The scatter in (p*, U*)x
reflects the uncertainty in the estimates due to the limited nature of the observations from which they were drawn. In
addition, the scatter will be larger (wider) than the true uncertainty distribution which could be computed using Bayesian
inference (as we did in Ref. [6]]), as the Bayesian computation would use the full set of N, + N, + 2 observations. If the
Gaussian posterior is far wider than the scatter in (p*, U*)y, it would be evidence that the Gaussian assumption for the
posterior distribution is inappropriate.

Note that for our problem, while we have N, and N calibration probes, they do not carry independent information.
The pressure and heat-flux measurements can be reduced to two constants (modulo measurement error) under a
self-similar transformation (see Ref. [6]]). Thus, we have 4 independent sources of observations, corresponding to
pressure, heat-flux, iy and Ppjo;. We perform a 4-way cross-validation (i.e., K = 4) by selecting 3 measurement
modalities at a time and computing (p*, U ), k = 1...4. In Fig.[7| we plot the inflow estimates (p*, U*)y as symbols.

Table 5 Summarization of posterior PDFs for po./pnorm and Us/U,orm for Case 4. The experimental
specification is also provided. The uncertainty in the experimental measurements is 7% for inflow density and 3%
for inflow velocity. p,o,m = 1.0 x 10*kg/m> and U,,,,,, = 1.0 x 10°m/s. IQR stands for Inter-Quartile Range
and CI for Credibility Interval. Note that the MAP value for inflow velocity in the MCMC solution is different
from the mean, and is actually quite close to the mean of the Gaussian approximation.

Summary Poo/ Prnorm Uso/Unorm

MCMC Deterministic Experiment ‘ MCMC Deterministic Experiment
Mean 9.186 8.619 9.84 (9.15, 10.52) 6.8 6.95 6.479 (6.23, 6.67)
Median 9.169 8.619 6.834 6.95
IQR (8.57,9.81) (6.29, 10.94) (6.67, 6.96) (6.5,7.36)
90% CI (8.0, 10.4) (2.97,14.3) (6.38,7.09)  (5.93,7.96)
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Fig. 6 Gaussian posterior PDFs from the deterministic inversion, compared to the ones from MCMC, for Case
4. Top left: Joint (0o /0norm> Uso/Unorm) PDF from MCMC plotted with gray symbols overlaid with contours
from the Gaussian PDF. The MAP estimate and the Optimal from the deterministic inversion are also plotted.
Bottom left: Marginal posterior PDFs for p../0,0rm, from MCMC and the Gaussian approximation from the
deterministic inversion. The Gaussian approximation is too wide and appears as an approximately horizontal
line. The MAP estimate (“MAP”; solid vertical line) and the optimal estimate (“‘Opt’’; vertical dashed line) from
deterministic inversion are also plotted, and are close. Top right: The PDFs from MCMC and deterministic
inversion, for the normalized inflow velocity. Bottom right: The same as the figure to the left, but zoomed out to
show the extent of the Gaussian posterior distribution.

These are computed for Run 35. The p* estimates are plotted in the left column and the U* in the right column. The
marginalized posterior distributions for p., and U are plotted as box-and-whisker plots, for the MCMC solution from
Ref. [l6] on top and the Gaussian posterior below. We see that p* and U* both show scatters that are wider than the
IQR for MCMC posterior distribution (top row of Fig. E]) In contrast, the bottom row, which contains the distribution
obtained under a Gaussian assumption, shows that p; and U, are clustered around the median, and are considerably
narrower than the IQR. While four (p*, U*)x samples cannot adequately represent a distribution, it is clear that the
Gaussian posteriors are far wider than the scatter in (p*, U*)r, (qualitatively) suggesting that the use of Gaussian
posteriors is inappropriate for this problem. While this was very evident from Fig. 3] Figl]and Fig. [6] where the
Gaussian posterior was compared with the one obtained using MCMC, the cross-validation test described above does not
require one to compute an exact posterior. It also explains why only the Gaussian IQR for Ue /U, Was (marginally)
useful, while the rest of the summary statistics were not. However, given the ease with which the Gaussian posterior
can be computed and then checked for the appropriateness of the Gaussian assumption (via cross-validation), it is a
convenient tool for quantifying the uncertainty in any estimates obtained using our deterministic inversion method.
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Inversions on a coarse mesh: Our inversion approach can be used to check the consistency of an experimental
dataset, e.g., to check whether certain measurements are consistent with specifications that accompany a dataset, e.g.,
the boundary conditions. This is especially powerful if the check can be performed with a subset of the measurements
where the accuracy of the flow model is not in doubt — in our case, the attached laminar flow on the fore-cone. Bayesian
inversion can be quite involved, as it requires the construction of surrogate models, as well as deciding on a stopping
criterion for the MCMC procedure. In contrast, the inversion methodology described here can be encoded into a flow
simulator and used widely; the basic theory is identical to optimizing an objective function. However, the inversion
procedure can be quite computationally expensive and it is open to question whether the same quantities could be
inferred on a coarser mesh, thus reducing computational cost.

In order to test this hypothesis, we repeated the inversion study described in Sec. on the Coarse and Medium
meshes (see Sec. , and compare the marginalized posterior distributions for P/ Pnorm and U /Unerm in Fig. 81 We
see that the differences between the distributions are minuscule. This is not entirely unexpected. The inferred inflow
conditions are affected by the measurement errors in the surface pressure p(x) and heat-flux ¢(x), along with any errors
in total enthalpy of the flow and Pitot pressure (which are mesh-independent). If these errors dominate the discretization
errors introduced by an overly coarse mesh, inferences drawn quickly on a coarse mesh may provide an acceptable, if
preliminary, diagnosis of the quality / consistency of an experimental dataset.

Constrained versus unconstrained inference The comparison between the Gaussian posterior and the one from
the MCMC solution, as shown in Figs. [3] ] and [] is not entirely fair. The Bayesian inference employed a uniform
distribution U (a, b) to serve as an informative prior for p, and U, which constrained the parameter-space that
was explored. This constraint arose from practical considerations as training data spanning a finite domain in the
parameter-space had to be generated before a surrogate model could be created. In contrast, our deterministic inversion
was unconstrained and did not require any knowledge of a bounded domain where the optimal value of (pc, Uso)
lay. In Bayesian parlance, therefore, b = —a = oo and the deterministic inversion starts with less information. If any
prior information, in the form of bounds on p, and U, are known a priori, the Gaussian posterior can be truncated
accordingly. It would certainly render the posterior more specific.

VII. Conclusion

In this paper, we have developed a deterministic inversion method to check the consistency of an experimental dataset.
As we begin to validate models against challenging test cases, with experimental data acquired in extreme environments,
the possibility of measurement errors creeping into the model validation dataset becomes uncomfortably high. This is
because the experimental apparatus is often operated at the edges of its operational envelope in these experiments, and
their behavior under those conditions is not always known. In many cases, it may be possible to partition an experimental
dataset into two and infer one from the other. If the inferred quantities lie within the experimental error bounds of the
corresponding measurements, the dataset can be deemed consistent. This does require that the model be an accurate one.

This approach was used in Ref. [6] to analyse the LENS-I (Run 35) and LENS-XX double-cone datasets (Case 1
and Case 4) studied in this paper. They found that Run 35 was consistent, but Cases 1 and 4 were not. However, that
study relied on (approximate) surrogate models of the Navier-Stokes flow model that we use. Our studies in Sec. [VI}
conducted using the deterministic inversion method that uses a Navier-Stokes model natively, largely bears out the older
results. If the measurements on the double-cone are correct, then the inlet conditions need to be different, provided the
inlet flow is axisymmetric. The measurements used in this study (as well as in Ref. [6]) are collected from the attached
laminar-flow region of the fore-cone, where the flow physics are relatively well-known.

The deterministic inference method is formulated as an optimization problem whose objective function is given
by the (scaled) sum-of-squares difference between the experimentally measured quantities and those predicted by
the CFD simulator. The optimization method is solved using a gradient-based approach, where the gradient of the
objective function is computed using adjoint sensitivities facilitated by differentiation of the CFD solver using automatic
differentiation. Since the inference method is deterministic, it only directly provides an estimate of the inferred
parameters. However, a posterior distribution can be estimated under Gaussian assumptions with the inferred parameters
as the mean of the distribution and the covariance given by the inverse of the Hessian of the objective function.

The mean of the posterior distribution obtained by our new method tallied with the MAP value, as well as the mean
and median computed from the posterior density obtained from the Bayesian inverse solution in Ref. [6]. That held true
for all three test cases in this paper. The Gaussian approximation to the posterior density was only marginally useful —
in case of a quantity that could be inferred with some confidence (e.g., U /Unorm), the inter-quartile range provided by
the Gaussian approximation was comparable to the one from the Bayesian solution computed with MCMC (in Ref. [6]).
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Fig.7 The “cross-validation” (CV) estimates (p*, U*)x, k = 1...4 for Run 35 plotted as symbols, with p., on
the left and U, on the right. The posterior distribution from a Bayesian inference of (o, U,) (from Ref. [6]) are
plotted as box-and-whisker plots on the top row. The bottom row has the posterior distributions obtained with a
Gaussian assumption. It is clear that the Gaussian posterior is overly wide (compare the vertical axes of the
Bayesian and deterministic estimates).

The tail of the Gaussian distribution was too wide. For a quantity that was more difficult to estimate e.g., poo/Pnorm, the
Gaussian approximation to the posterior was not helpful.

We find evidence that the inlet conditions for Case 1 could be different from what was stated in the experimental
dataset. This conclusion is conditional on the model (Park’s, [15]) used for vibrational non-equilibrium, but studies have
shown that using a more sophisticated model does not improve predictions materially [11}[13}[16]]. Case 4 experiences
vibrational and chemical non-equilibrium, and detailed studies have shown that existing thermochemistry models do not
reproduce measurements well [10H12]]. The inlet conditions, as inferred by us, are definitely outside the range of stated
experimental error.

This raises the question of what could be the cause of the discrepancy between model predictions and measurements.
All CFD studies to date have assumed that the inlet flow is axisymmetric and steady, but the experimental dataset
available to us does not allow us to test an alternative hypothesis. More research is definitely warranted, as is more
experimental data. Repeated runs, that would allow us to assess the run-to-run variability and measurements on different
sides of the double-cone, that would allow us to test the assumption of axisymmetric flow, would most likely top a
modeler’s wish-list. One interesting study [58] looked at the effect of non-equilibrium flow af the inlet and found that it
could increase the size of the separation bubble, without materially changing the heat-flux and pressure profiles on
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Fig. 8 Marginalized posterior distributions for p../p,0rm (left) and U, /U,y (right), for Run 35 (Sec.[VLA),
computed on a Coarse (128 x 256), Medium (256 x 512) and Fine (512 x 1024) mesh. There is barely any
difference in the posterior distributions.

the fore-cone. However, the study was performed for an O, environment in the LENS-I shock tunnel; in contrast, the
LENS-XX expansion tunnel is designed to suppress non-equilibrium processes upstream of the test-section inlet.

A. Forward Sensitivities
Referring to (2), the double-cone problems of interest are steady-state flows given by solving f(u, y) = 0. However,
due to numerical difficulties in computing these steady-state solutions, SPARC employs implicit time integration
methods, starting from an initial uniform flow, to compute them by solving numerically the following coupled system of

ordinary differential equations:
Mu+ f(u,y) =0, 6)

where M € R™*" is the mass matrix. For computing steady-state solutions, SPARC employs the Backward Euler/BDF1
time discretization, resulting in the following nonlinear equations that must be solved at each time step k:

- 1
Sfi(uper,y) = A_[k(MukH - Muy) + f(ugs1,y) =0, k=0,1,.... 7

The above time step equations are solved using Newton’s method

1 -
! ! I I+1 I !
AtkM T ) | Aty = —fe(ugy s y),  ughy =g +Auy,,, 1=0,1,..., 8
where ug .1 = Uk and J is an approximation to the Jacobian matrix 8 f//du that does not include second-order stencil

terms nor viscous cross terms. For steady-state solutions, (7)) is only approximately solved by applying a small, fixed
number of Newton iterations (often one) in (8], and thus is not time-accurate. We thus refer to this approach as
pseudo-transient time stepping as it is essentially a form of pseudo-transient continuation [59].

SPARC has numerous linear solvers available for solving (8], such as fixed-point solvers, preconditioned Krylov
solvers, and sparse-direct solvers. For the problems of interest here, SPARC employs a small number of fixed-point
iterations using its block tri-diagonal/line implicit solver [33]]. Of relevance to the adjoint approach described later,
SPARC can also apply GMRES to (8)) using exact Jacobian-vector products provided by the tangent forward AD mode
implemented with Sacado, preconditioned by a small number of fixed-point iterations of the block tri-diagonal solver.
Finally, to accelerate convergence to steady-state, the time step sizes At are gradually increased over the course of the
time integration. Ultimately, the time integration stops when the norm of the nonlinear residual || f (u, y)||> becomes
sufficiently small, or a maximum number of time steps is exceeded.

SPARC supports computing sensitivities of the flow solution u# with respect to model parameters such as inflow
boundary conditions, which was used to generate the sensitivities of pressure and heat-flux as shown in Fig.[2] This is
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done by differentiating (6) with respect to y,

sz 2 o ®)
ou

MZ
dy

where Z = du/dy € R™™. After BDF1 time discretization, this becomes

0 0
Fi(Zist, ugs1,y) = —(MZk+1 -MZy) + f(uk+1,y)Zk+1 + —jyf(ukﬂ,Y) (10

This is implemented in SPARC by directly modifying its time integration implementation to also compute {Z},
where the relevant partial derivatives are computed by Sacado. Note that by using the tangent forward mode of AD,
(0f |0u)Z + 0 f [y is computed directly without explicitly forming d f /du, with a cost proportional to m. Furthermore,
SPARC supports several approaches for solving (7) and (T0). The method used here solves (7) and (I0) together at each
time step (equivalent to the simultaneous corrector method [60] in the literature). As with the forward solution, a small
number of Newton iterations are used each time step with inexact linear solves using the SPARC native (approximate)
Jacobian. The corresponding Newton system is

ALtkM +J (e, V)| AZL, = —Fi(Zh, ik y), ZEN =270 +AZL,, 1=0,1,..., (11)
which is solved along with (§). Note that Newton matrix is the same in (§) and (TI)), and thus AuéC . and AZ,’( L are
computed together by a single linear system solve with multiple right-hand-sides. Furthermore, we have found the same
run-schedule for determining time-step sizes of the flow solution typically works well for the forward sensitivity system
when using the combined approach, making the approach fairly robust. Finally, this approach provides the forward
solution and its sensitivity with respect to m parameters in about m + 1 times the cost of the forward solution alone.

B. Adjoint Sensitivities
While the forward sensitivity approach described above amounts to a direct differentiation of the forward simulation
time integrator, a different approach is required for the adjoint sensitivity. As shown in Eq. (3), the adjoint, w is governed

by the following linear equation,
] d ’
( o . y)) W= (3—g(u,y)) : (12)
u

where u is the solution to f(u,y) = 0in (2).

Due to severe ill-conditioning, directly solving (I2) for w using SPARC’s available linear solvers is unable to
compute w with a sufficient level of accuracy. Instead, we employ a quasi-Newton approach which requires solving a
sequence of linear systems of the form

0
JT(uoo,y)AwiH: ( !

ag T
(M Y) Wk+1 + al/{ (M»Y) ’ (13)
where J7 is the approximate adjoint operator computed from the approximate Jacobian used in SPARC’s forward
simulation. This approach, coupled with a line search-based Newton method from the NOX [61] nonlinear solver

package and SPARC’s block tri-diagonal solver, was found to be effective for the Run 35 and Case 1 versions of the
double-cone problem. By further specifying use of the true adjoint as the Newton matrix, a true Newton’s method is

obtained:
(7 (%

T
(u, y)) Whyt = (u, y)) w2+1+(2—§(u,y)) : (14)

We found this approach to be effective for all double-cone problems, including Case 4, using at each Newton iteration
GMRES preconditioned by the block tri-diagonal solver applied to the approximate adjoint J7. In both cases, multiple
Newton iterations were required to obtain a solution to the adjoint system with a small residual due to the poor
conditioning of the true adjoint matrix. We note that Newton’s method applied to a linear system is equivalent to
iterative refinement, and when GMRES is used as the linear solver, it is equivalent to restarted-GMRES.

The various partial derivatives appearing in (T4) are computed using automatic differentiation with Sacado which,
as described above, is designed to differentiate the parallel CFD residual assembly in SPARC using the tangent forward
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mode of AD. However, because of the transpose, the tangent forward mode of AD cannot be used to implicitly compute
the adjoint residual (8 f/du)Tw — (0g/0u)T. While reverse mode AD can be used to compute this implicitly without
constructing (4 f/du)T, and Sacado provides reverse mode AD tools, those tools are not able to differentiate the parallel
computations implemented in SPARC’s residual assembly. Thus, we explicitly form d f/du and 0g/du using the
forward AD tools in Sacado along with graph coloring, and then explicitly transpose them.

Graph coloring is a well-known method for computing sparse Jacobian matrices using forward mode AD techniques
designed for computing dense Jacobian-vector products [50]. In brief, it constructs a matrix V with a minimal number of
columns so that d f /0u can be easily extracted from W = (0 f/0u)V. The idea is to compute W using tangent forward
mode AD by seeding the derivative directions for # with columns of V. There are many approaches that have been
developed for constructing V, but a common approach is to compute a distance-2 coloring of the bipartite graph whose
vertices are the rows and columns of the matrix, with an edge between a given row and column if the corresponding entry
of the matrix is nonzero. The distance-2 coloring then partitions the columns into groups of structurally orthogonal
columns (i.e., columns with no overlap in nonzeros). Each group corresponds to one column of V and is given by the
columns of the identity matrix corresponding to the columns in the group. Once W is computed, it is straightforward
to compute 9 f/du given the list of columns associated with each color/group. In this work, the coloring method is
implemented by the Zoltan/Zoltan2 package [53] using its parallel distance-2 coloring algorithms [51,152]]. Since the
heat-flux and pressure terms of the objective function (3) use the same finite volume stencil as the residual evaluation,
the same coloring information can be applied for computing dg/du (note the total enthalpy and Pitot pressure terms do
not depend on u and hence do not contribute to dg/du).

Once w is computed, the objective gradient is computed via

T T
Vh<y>=—(z—§(u,y)) w+(g—§<u,y>) . (15)

Since the dimension of y is small (only 2 in this case), we compute the needed partial derivatives, d f/dy and dg/dy,
using traditional forward mode AD techniques using Sacado and then perform the needed vector linear algebra operations.
Unlike the forward sensitivity method described earlier, we found the cost of computing w using the above techniques,
as well as assembling the gradient V4 to be insignificant compared to the forward solution (typically around 1% of the
total runtime).
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