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2D materials are susceptible to extrinsic factors

2D materials are attractive candidates for electronic and e |Interfaces with metallic contacts materials are crucial

optoelectronic devices components of electronic any optoelectronic device
Reported sensitivity to extrinsic factors such as substrate b Transterred Au fempomssns
interactions, mechanical strain, and charge transfer W o

?

Bonds and
strain

Liu, et al., Nature 557, 2018, 696-700

« Strong interactions with Au has enabled Au-assisted
exfoliation to produce large area high-quality 2D TMDs

o

Intensity (a.u.)

Shin, et al., Advanced Materials 28, 2016, 9378-9384

Raman shift (cm~1)

Velicky, , et al., ACS Nano, 2018, 12, 10, 10463-10472




The Schottky barrier height (SBH) is a
key parameter in device functionality
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Tuning SBH is difficult in TMD devices due to
Fermi-level pining (FLP)
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Wang, et al., Journal of Materials Chemistry C, 2020, 3113-3119.

Multilayered TMDs can alleviate FLP
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Jo, et al.,, ACS Nano, 2021, 15, 5618

/" TMD sensitivity strongly impacts electronic performance

Huola barriar (e

Archetypal methods for extracting SBH from transport
measurements average over the entire contact area
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fabrication

Photoemission electron microscopy (PEEM):

/ A type of electron microscopy coupled with UV- or X-ray
ilumination to image nanoscale variations in
photoelectron intensity
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Introduction: Photoemission electron microscopy and TMD-Au

We study TMD-Au interfaces fabricated through
mechanical exfoliation with three different types
of AU Substrates
1) as-deposited

+ E-beam evaporated

(ii) nlasma-freated

O, plasma Jeiuily

$1111

(i) oriented porous metallic
netv. vt T2 Au

pores

Fonseca et al., Nat. Commun., 2020, |1, 5

* Pseudo-epitaxial interface

* Resulting from the re-flow &
recrystallization of Au by annealing

Thomas et al., ACS Nano. 2021, |5, 18060



interfaces
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« Contrasting um sized domains in
PEEM intensity

* Presentin 1-3L WS, thickness
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PEEM contrasts arise from
difference in secondary electron
cutoff L.e. work function
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/Micron-scale work function heterogeneity in as-deposited Au-WS,

Large work
function variation
(~200 meV)

Indicates that the
carrier density
varies in the WS,
flakes




Pixel Count {arb. units)

Micron-scale VBM heterogeneity in as-deposited Au-WS, interfaces

2L-WS, on as-deposited Au
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show corresponding upshift
in VBM = rigid shift
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Schottky barrier height is
expected to vary across the
metal contact
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function areas
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/ "~ WS, covered As-deposited Au

/Three predominant crystallographic orientations of the Au grains
/" elucidated via EBSD
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EBSD: Electron Backscatter Diffraction oo op kWP
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/" Concluding remarks
/8

7+ We have quantified key variations in electronic structure of TMD-Au
interfaces indicative of Schottky barrier height variation relevant for
device application

rd

» Local electronic structure variations of WS, governed by the crystal
orientation of Au grains

*  Metal microstructure plays an inherent role in contact formation with
TMDs

« Further, controlled processing of Au substrates can generate
uniform TMD-Au interfaces
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WS, covered plasma-treated Au
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