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Cycle Performance of Gel Electrolyte Cells
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A gel electrolyte have drawn research interest as an alternative to a
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* A poly(acrylic acid)-potassium hydroxide (PAA-KOH) hydrogel was investigated and
optimized as the electrolyte due to its high hydrophilicity and high ionic conductivity.

* Chemicals: Potassium persulfate (K,S,0q, initiator), Potassium hydroxide (KOH),
Acrylic acid (C,H,COOH, monomer), N,N’-Methylenebisacrylamide (cross-linker)

with the same effective hydroxide
concentration were carried out

* The gel electrolyte cells provided more
stable performance than the liquid
electrolyte cells and achieved longer cycle
life (Figure 3).

* The failure mechanism for the liquid
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 Reaction mechanism: Free radical polymerization.
Initiator: S,05~ — 2S0;

Initiation Propagation

S07 + H,C=CH . 0,50-CH,~CH’ . “0450-CHo——CH CH,—CH' electrolyte cell was due to short circuit
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Acrylic Acid (AA) cycling: (a) liquid electrolyte and (b) gel electrolyte.
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- , N N Figure 5. Cyclic voltammetry data of MnO, cathode™ against NIOOH monitored by Hg| HgO electrodes with a liquid KOH
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7'3E5 o diffusion but to prevent leaks cycle. All reduction curves show stable Mn reduction (Mn*3 to Mn*2) peaks at -0.65 V
il oTiow e By keeping the reaction vs Hg | HgO
7.8E-5
temperature constant at 0 °C, the * The liquid electrolyte cell shows that the peak (Mn*2 to Mn*3) at -0.25V vs Hg|HgO is
TTz:]bIe319.2TEh§ ami)u:t of.crosilkr;lléir variec;l] for h::drorg]el syn.th.esi:;. reaction kinetics was r.etarded to fading but the peak (Cuo to Cu+2) 3t -0.15V vs Hgl HgO is getting stronger
S oere mor rac;g;sgel elec\frisl;tezsen or the optimize have enough soaking time for * The peaks at -0.25V and -0.15V vs Hg|HgO of the gel electrolyte cell are showing

porous Zn and MnOQ, electrodes stable Mn and Cu electrochemical reaction performance
* Using the gel electrolyte is assumed to limit Cu diffusion so that it could make (Cu-

EIS Measurement for Zn Foil Symmetric Cell Bi)Mn complex formation reversible, leading stable performance
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Figure 2 (a) EIS measurement data for Zn foil symmetric cell
with the gel electrolyte (circle) and a liguid KOH electrolyte ACknOWIEdgementS
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Figure 1. Experiment setup for Zn foil EIS measurement. The
gel electrolyte was put into the square area from the top of
the rubber gasket. Then, each Zn foil was assembled
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: 12; - s T * A poly(acrylic acid)-potassium hydroxide (PAA-KOH) hydrogel electrolyte was developed
i £ ] : ] o and incorporated into non-spillable rechargeable alkaline Zn-MnO, batteries.

L= domn N * The gel electrolyte was tested for Zn ion diffusion via EIS measurement

I Y * Galvanostatic/Potentiostatic results suggested that using the gel electrolyte helped Cu
i § LM _ diffusion and was assumed to stable [Cu-Bi(MnO,)] complex, leading stable
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* R, isthe solution resistance; R, is the charge transfer resistance between Zn foil
and the gel electrolyte; C, is the capacitance from the gel electrolyte; R; is the
resistance resulting from hydroxyl ion transport; Q, is the constant phase element
for non-faradaic charging of the double layer; Gb, is the resistance from the
chemical reaction between Zn and OH-
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