

U.S. DEPARTMENT OF
ENERGY

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2022-14889C

UNIS CO-LED BY NREL, UNIVERSITY OF WASHINGTON, AND EPRI

unifi
consortium

universal interoperability
for grid-forming inverters

Integration and Validation

Organization

Thrusts

Research & Development

- Advance R&D for GFM technologies
- Ensure a coherent & comprehensive portfolio of solution sets
- Integrate & evaluate new capabilities, products, & processes

Leadership

Establish management & governance structure to support sustained US leadership in GFM tech

Develop/Update Interoperability Guidelines and Functional Requirements


R&D (Mod/Sim, Controls, Hardware)

- Proof of concept development
- Application of new ideas in simplified systems
- Can be simulated, HIL, or hardware, but limited and size and scope of aggregations/heterogeneity of technologies

I&V

- Evaluation of heterogeneous systems
- Interactions between assets in realistic power systems (e.g. with rotating machines, protection systems)
- Evaluation of R&D work product in reference systems
- Benchmarking of current technologies
- Evaluation of Interoperability Guidelines

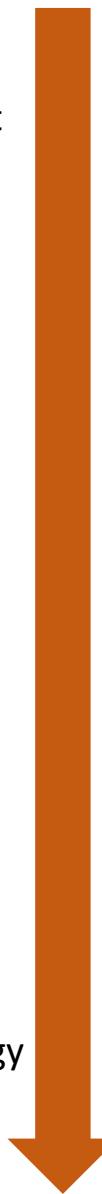
Modeling & Simulation

Hardware

Controls

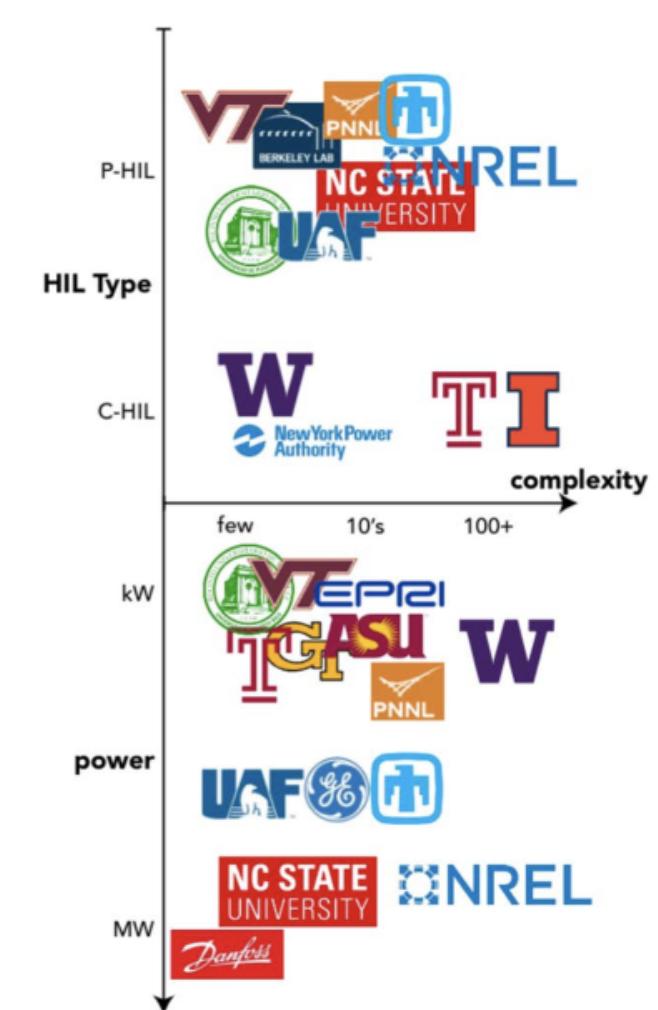
Integration & Validation

IP management


Domestic Products

Standards

Field Demonstration


D&C (Field Demo, Standards)

- Real application of field ready technology focused on actual systems
- Full complexity of aggregation/heterogeneity

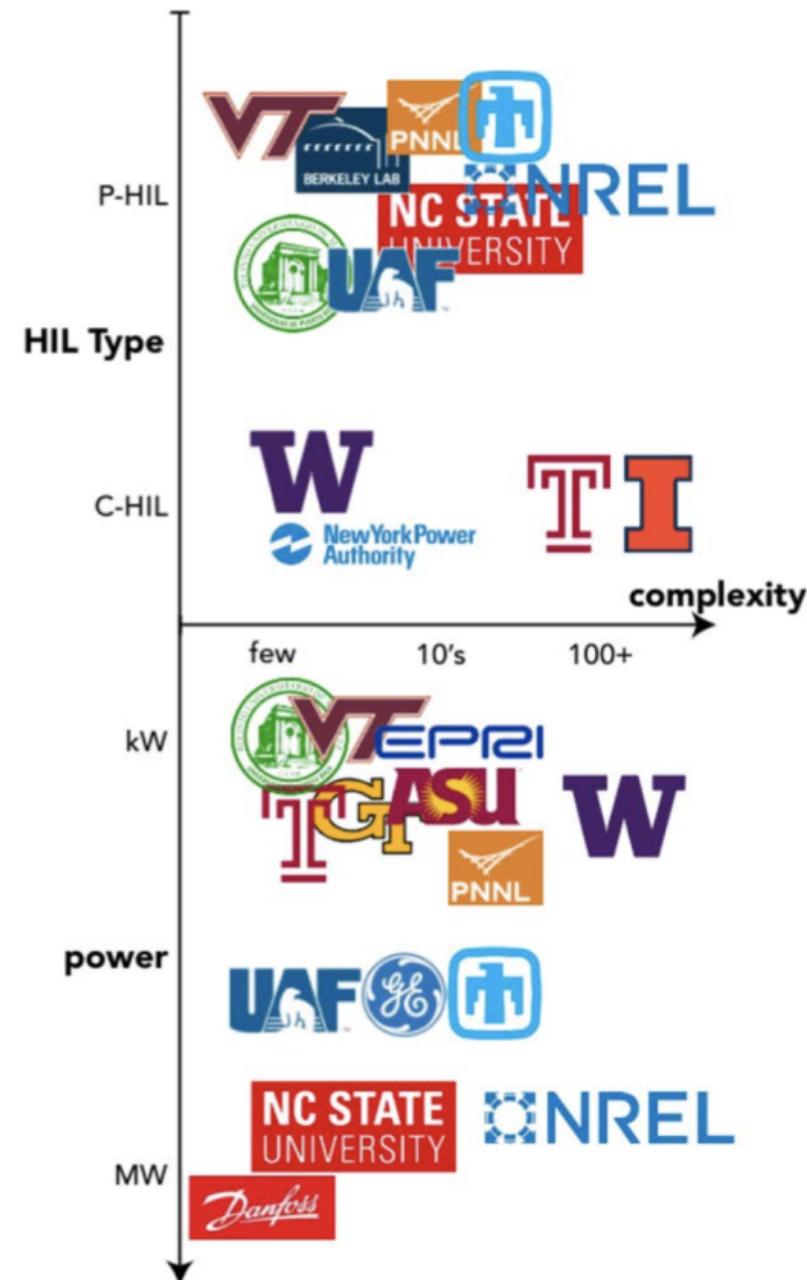
Integration and Validation -- Focus

1. Evaluate performance of GFM technologies in representative integrated power system environments
 - Highly heterogeneous systems, e.g., control schemes, resources
 - Benchmark proposed R&D technology against commercially available counterparts
 - Validate models and hardware in complex systems
2. Establish a **conduit** between the R&D areas to activities that are a part of the D&C Areas
 - Develop characterization procedures for single units, aggregations of units, and heterogeneous systems
3. Evaluate the Consortium developed ***Interoperability Guidelines & Functional Requirements***

Integration and Validation -- Focus

Work is roughly split into three Areas:

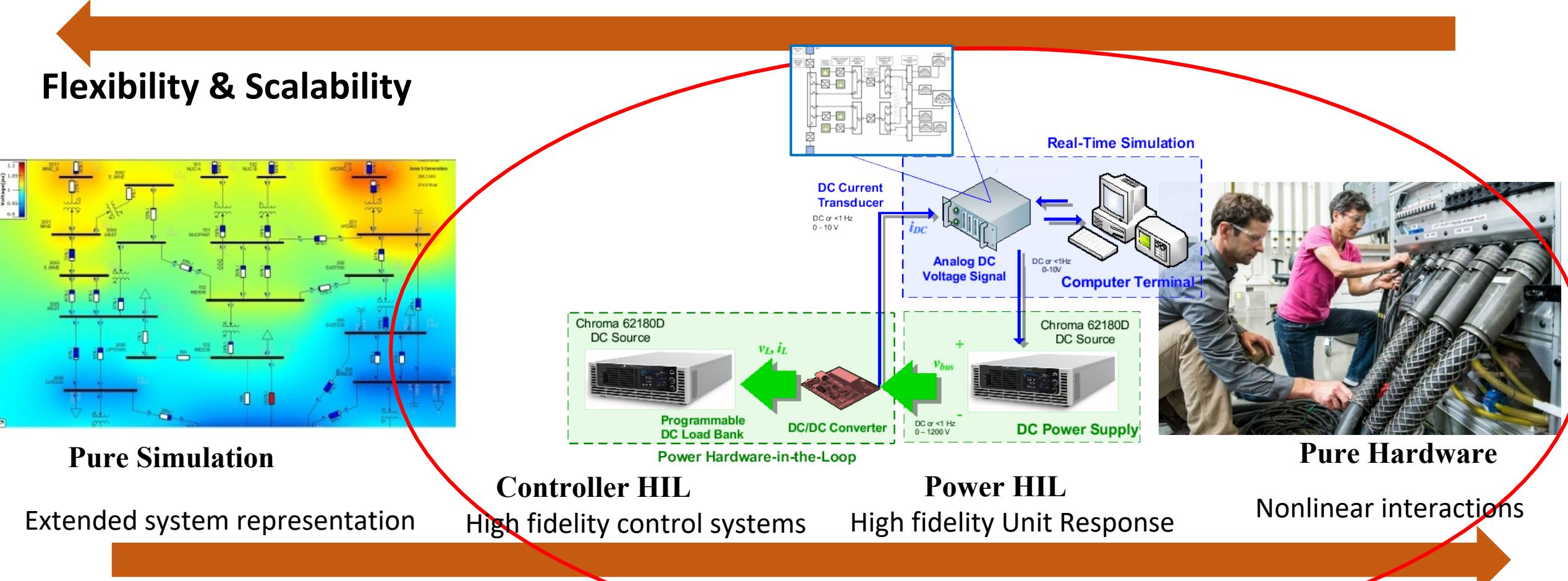
1. UNIFI validation infrastructure and IBR baseline characterization


- Developing experimental capabilities/systems for measuring GFM in systems
- Baseling current capabilities of GFM

2. Integration of GFM IBRs into Power Systems

- Evaluating R&D work product and quantifying improvements over baseline

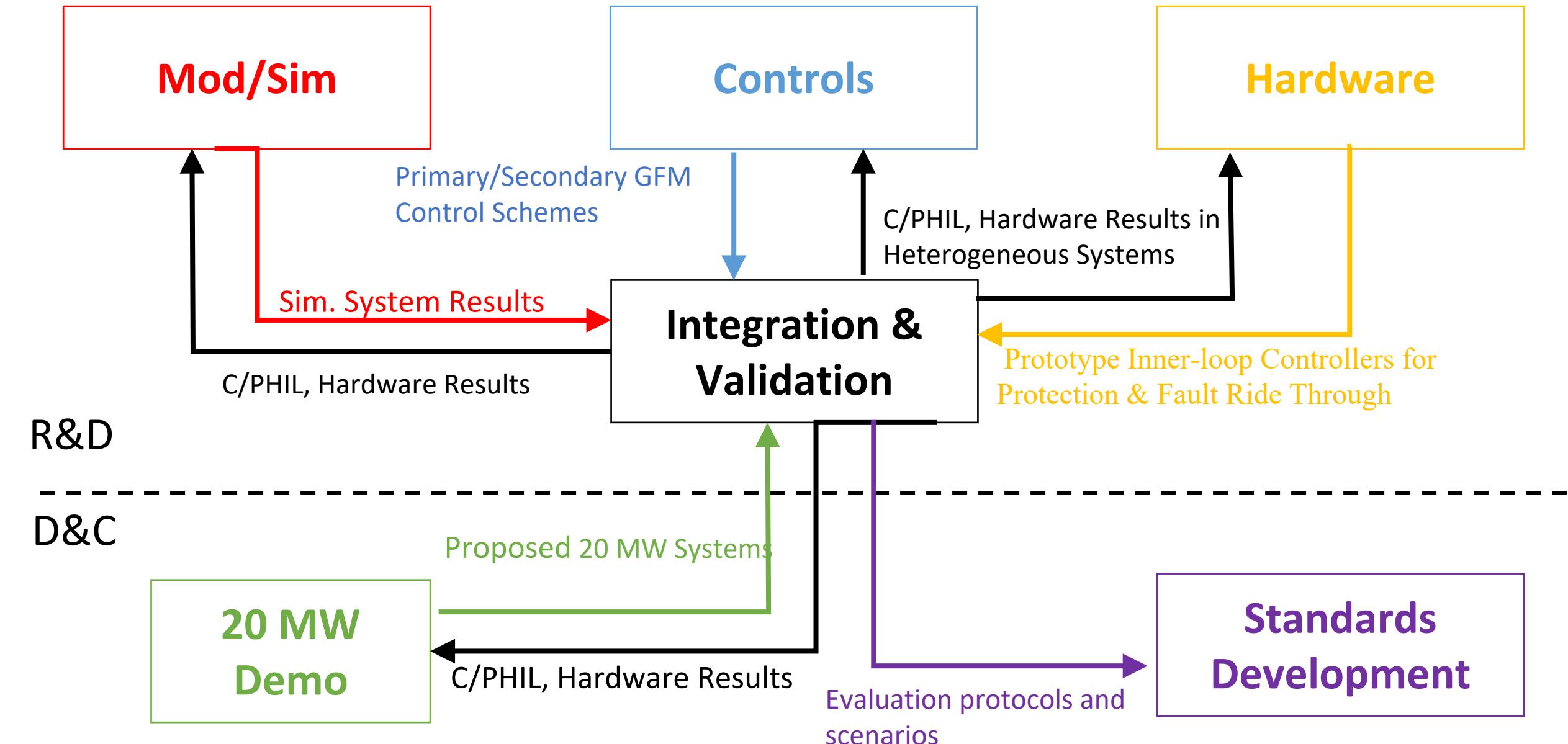
3. 1+MW Multi-vendor Experiments


- Hardware demonstration for heterogeneous systems

Task 1: Validation infrastructure and IBR baseline characterization

- **Development of validation and verification (V&V) infrastructure across partner's facilities**
 - Initial setup, commissioning and documentation of testbeds
- Baseline characterization of selected commercial off-the-shelf (COTS) IBRs
 - Use results to complement and inform activities of the modeling, controls and hardware areas

Integration and Validation – Tools for heterogeneous systems


CHIL, PHIL, and Hardware evaluation of GFM in systems:

- Mixtures of GFM, GFL, rotating machines
- Normal operating conditions
- Contingency conditions (fault, blackstart)

Task 2: Integration of GFM into Power Systems

- Development and refinement of testing protocols and scenarios for UNIFI Interoperability Guidelines and Functional Requirements
 - Criteria for evaluating single units, aggregations of units, and heterogeneous systems
 - Specifications necessary for GFM IBRs to ensure seamless interoperability with the power system
- Application of testing protocols against GFM models and hardware/control prototypes produced by the other R&D Areas, or provided by industry partners
 - Quantify the impact of GFM behavior in heterogeneous systems
 - Consider both normal and contingency conditions over all time-scales
 - Evaluate Consortium proposed interoperability behaviors
 - Evaluate R&D products from across the Consortium

Integration and Validation -- Focus

Task 3: 1MW Hardware Demo

1 MW Experiment – at NREL in Year 3

- Includes various physical sizes (250W-1MW)
- Three-phase, single-phase generation & loads
 - GFM, GFL, & synchronous machines
 - Comms interfaces (2030.5, SunSpec)
- Multiple source-side resources (PV, energy storage, wind (if possible))
- Coupled to PHIL to evaluate scales: 1MW microgrid to larger grids
- 50%, 75%, 90%, and 100% power contribution from GFM IBRs
- Network connections (LV and MV, overhead and conductors)
- Explore options to distribute demonstration amongst capabilities in multiple partner labs (ex. Via Real Time Simulation)
- Illustrate the *Interoperability Guidelines* at work with multiple vendors and wide variety of functionalities

Integration and Validation – Milestones

Year	Validation infrastructure and baseline characterization	Integration of GFM IBRs into Power Systems	1+ MW Demo
1	<ul style="list-style-type: none">• Standardize information formats and testing architecture and use cases for C-HIL and P-HIL across Consortium• Identify set of baseline GFM inverters and their capabilities for laboratory testing	<ul style="list-style-type: none">• Draft of evaluation protocols for GFM that incorporates expected behavior for single GFM units, GFM aggregations, and hybrid systems	<ul style="list-style-type: none">• Specify requirements for 1+MW assets and scenarios
2	<ul style="list-style-type: none">• Commission C-HIL, P-HIL, and hardware setups for use cases from BP1	<ul style="list-style-type: none">• Utilize setups use cases to evaluate baseline GFM operations and proposed envelope of GFM functional behaviors for contingency scenarios	<ul style="list-style-type: none">• Commission 1+MW demonstration in laboratory

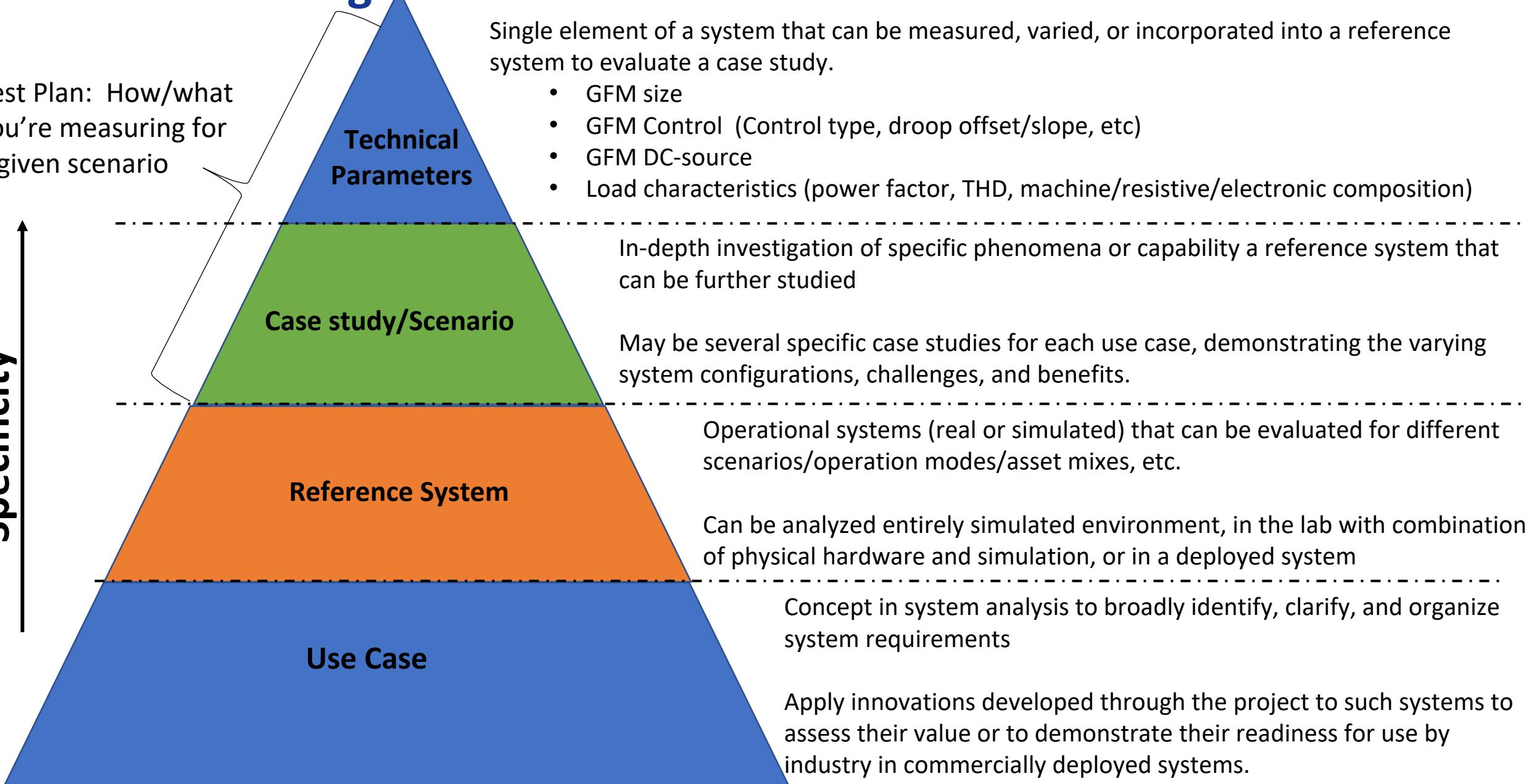
Integration and Validation – Milestones

Year	Validation infrastructure and baseline characterization	Integration of GFM IBRs into Power Systems	1+ MW Demo
3	<ul style="list-style-type: none">Detailed evaluation of candidate 20+MW demo components(s) under normal and contingency operation.	<ul style="list-style-type: none">Incorporate and evaluate GFM control models with communication interfaces in real-time CHILValidate GFM control models and protection coordination under symmetrical/asymmetrical faults and system restoration in HIL	<ul style="list-style-type: none">Conduct 1MW scenarios as determined in BP1.
4	<ul style="list-style-type: none">Demonstrate user-facility experimental workflow with project partners	<ul style="list-style-type: none">Evaluate resynchronization and fault current behavior (both balanced and unbalanced) over all relevant timescales in use casesValidate GFM models against laboratory tests of GFM inverters	<ul style="list-style-type: none">Complete report on 1+MW demonstration system evaluation
5	<ul style="list-style-type: none">Final Report for proposed interoperability requirements and testing protocols as evaluated in C-HIL and P-HIL setups	<ul style="list-style-type: none">Evaluate designed secondary control diagram with usage cases in contingency scenarios.	

Integration and Validation – Milestones

Year	Validation infrastructure and baseline characterization
1	<ul style="list-style-type: none">• Standardize information formats and testing architecture and use cases for C-HIL and P-HIL across Consortium

Establish common use cases, scenarios, and references systems for GFM integration


- Standardized systems and test cases across the multiple R&D areas
- Definition of operational benchmarks
- Evaluate baseline (current state-of-the-art) GFM operation and future R&D work produc
- Understand unit-level and system-level performance for different technologies.

I&V group has developed a hierarchical categorization for GFM testing

Hierarchical Categorization of GFM Use

Test Plan: How/what you're measuring for a given scenario

↑
Specificity

Hierarchical Categorization of GFM Use

Use Cases	Microgrid----	Island (isolated) Grid	Distribution Connected	Transmission connected
Reference Systems (linked to mod/sim software library)	<ul style="list-style-type: none"> • Banshee • Sheriff • Consortium for Electric Reliability Technology Solutions (CERTS) • 1MW Demo System 	<ul style="list-style-type: none"> • Hawaiian Islands (Oahu, Kauai, Maui) • St. Mary's, AK • South Australia, AEMO • Culebra, PR 	<ul style="list-style-type: none"> • IEEE test feeders (342-Node, 13-Node, 34-Node, 123-Node, 8500 system) • EPRI Ckt 5 • 20 MW Demo 	<ul style="list-style-type: none"> • 1WECC System • IEEE systems (39 Bus, 14 Bus) • 2000 Bus Synthetic Texas System • Hydro Quebec System • Eastern Interconnect
Scenarios (linked to <i>Interoperability Guidelines and Functional Requirements</i>)	<ul style="list-style-type: none"> • Blackstart • Generation Loss/Load step • Fault (balance/unbalance) • Phase Imbalance (voltage/power) • Island/resynch. (control/uncontrolled) • Inductive Inrush/motor stall • Overload (load > generation) • DC-side Dynamics 	<ul style="list-style-type: none"> • Blackstart • Generation Loss/Load step • Fault (balanced/unbalanced) • Phase Imbalance (voltage/power) • Multi-segment island/resynch • Overload (load > generation) • Inductive Inrush/motor stall • DC-side Dynamics 	<ul style="list-style-type: none"> • Generation Loss/Load Step • Fault (distribution) • Phase Imbalance(voltage/power) • Loss of Utility • DC-side loss of generation • Inductive Inrush • Protection Coordination • Overload (load > generation) • Fault (Transmission) 	<ul style="list-style-type: none"> • Generation Loss/Load Step • Fault (Distribution) • Blackstart • System oscillation/transient stability • Line Series Compensation • FACTs device interaction • Fault (Transmission) • Protection Coordination

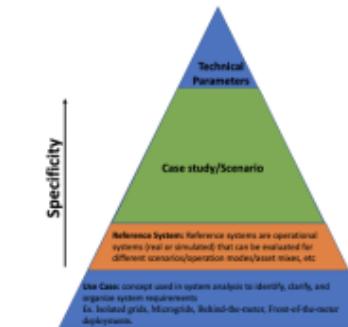
1. Bulk List of Use Cases/Reference

Systems/Scenarios

2. Rank based on importance from UNIFI input

3. Prioritize Experimental setups considering importance ranking and organizational capabilities

4. Feedback from other Working Groups and Stakeholders



Finalize

5. Use Cases, etc.
6. Organizational capabilities and assets
7. Partition scenarios (reference systems) according to organizational capabilities

CY23: Commission Setups
Carry out Testing on baseline GFMs

Microgrids

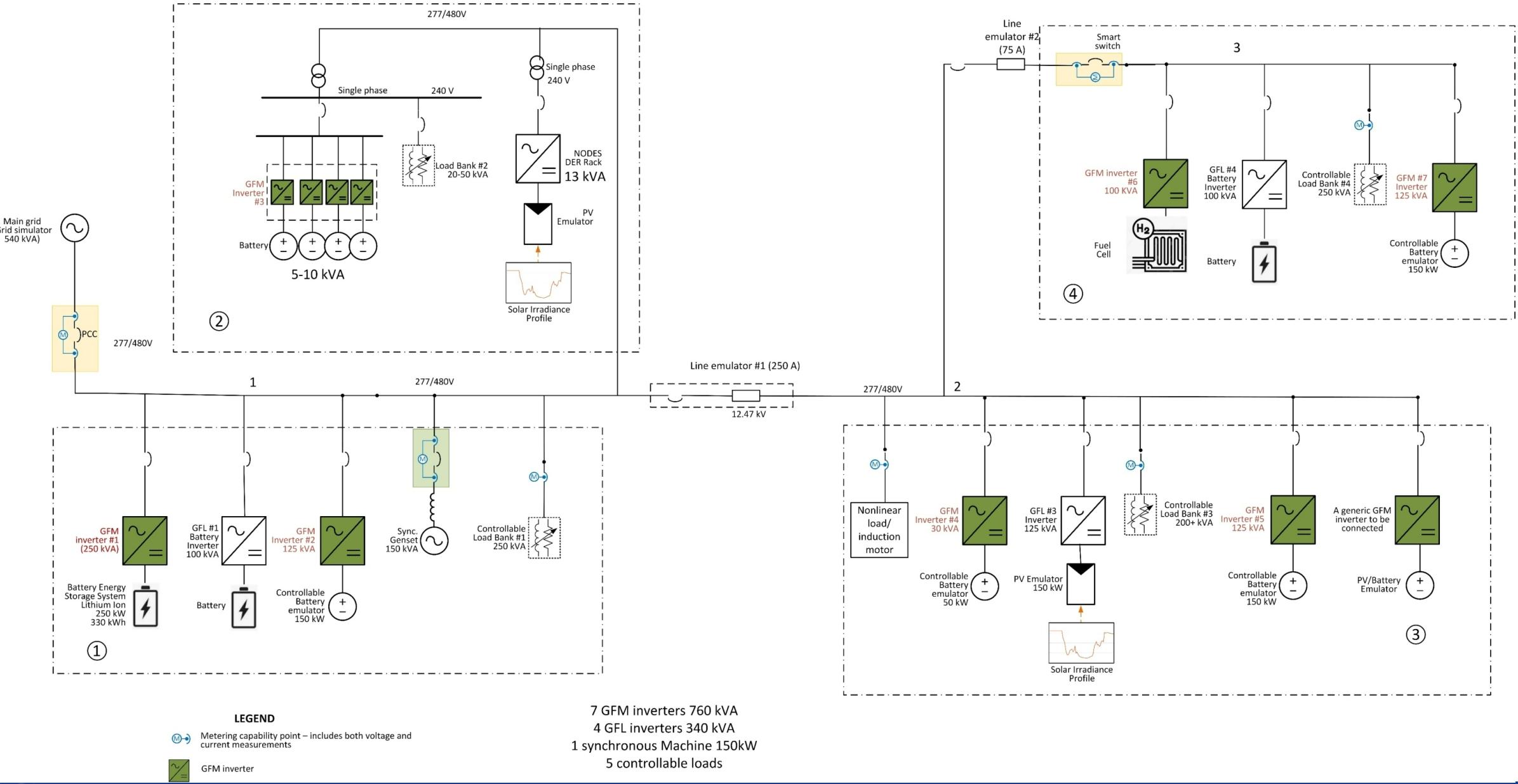
For GFM in microgrids, what scenarios are most (1) to least (8) important?

	1	2	3	4	5	6	7	8
Blackstart	<input type="radio"/>							
Generation Loss/Load step	<input type="radio"/>							
Fault (balance/unbalance)	<input type="radio"/>							
Phase Imbal. (voltage/power)	<input type="radio"/>							
Island/resynch. (control/uncontrolled)	<input type="radio"/>							
Inductive Inrush	<input type="radio"/>							
3ph/1ph, load/gen.	<input type="radio"/>							
Overload (load > generation)	<input type="radio"/>							

What scenarios are important for microgrids, but not listed?

BACK

NEXT

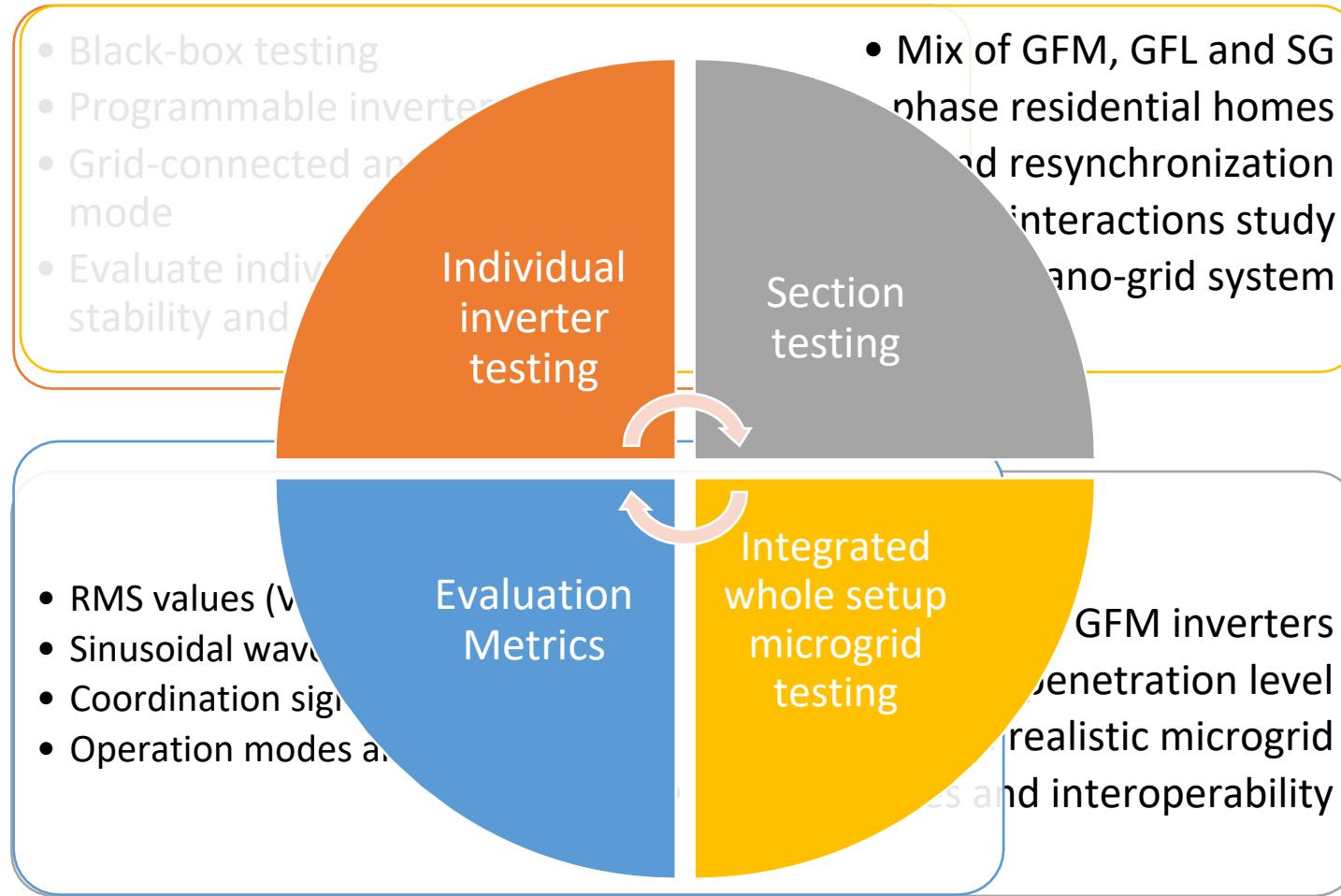

Made with

Grid Forming Inverters	Transformer	Power (kW)	Current (A)	Voltage (V)	DC-side source	Type	Wire Configuration	GPI	Operating Modes (V/I/O, I/V, G)	Surge Capabilities	Communications Interface	Phase Balance?	Black Start?
Princeton Power Systems	external transformer, auto-tap	30	36	277/480	NHR 9306/ 280-830V	Three phase	3-wire delta or star/line	1	V ⁺ I ⁺ V ⁻ I ⁻ G ⁺ G ⁻	?	Modbus		yes
3 Phase Outback Inverter	transformerless	9	25	128/238	48V Batt/NHR 9309	Three Phase	4-wire	1	V ⁺ I ⁺ V ⁻ I ⁻ G ⁺ G ⁻	2.5Gp.u.	Modbus TCP/IP (through Modbus)		yes
SMA Sunny Island	transformerless	5.75	47.9	128	48V Batt/NHR 9301	Single Phase	single phase (line + neutral)	1	V ⁺ I ⁺ V ⁻ I ⁻ G ⁺ G ⁻	1.6Gp.u.	?		yes
1 Phase Outback Solar	transformerless	5	28.8	128/240	48V Batt/NHR 9302	Single Phase	split phase (2 line + neutral)	1	V ⁺ I ⁺ V ⁻ I ⁻ G ⁺ G ⁻	1.4Gp.u.	Modbus		yes

Integration and Validation – Milestones

Year	Integration of GFM IBRs into Power Systems	1+ MW Demo
1	<ul style="list-style-type: none">Draft of evaluation protocols for GFM that incorporates expected behavior for single GFM units, GFM aggregations, and hybrid systems	<ul style="list-style-type: none">Specify requirements for 1+MW assets and scenarios

Current work- 1MW Demonstration


Preliminary Scheme for 1MW Demo

Component	Capacity	Controllability	Comms
Diesel generator	150 kVA	Droop coefficients, P* and Q*	Modbus TCP
GFM inverters (760 kVA in total)	125 kVA DynaPower (3 units)	Fully programmable	Modbus TCP
	5-10 kVA 1φ Enphase inverter	Can only change bias	2030.5-2018
	250 kVA EPC battery inverter	Can tune some control parameters	Modbus TCP
	30 kVA CE+T battery inverter	Can tune some control parameters	Modbus TCP
	100 kVA ABB battery inverter	Can tune some control parameters	Modbus TCP
GFL inverters (340 kVA) Note: we have 6 NODES DER racks. We just book one for now.	125 kVA SMA inverter	Receive external P and Q set points	Modbus TCP
	100 kVA DynaPower inverter (2 units)	Receive external P and Q set points	Modbus TCP
	13 kVA NODES DER rack (2 PV inverter, 1 battery inverter) (single-phase)	Receive external P and Q set points	Modbus TCP
Three phase loads (600 kVA)	250 kVA (2 units), 100 kVA	Can change PQ set point (spreadsheet)	Modbus TCP
Single-phase loads (40-100 kVA)	20-50 kVA (2 units)	Non-controllable	
Non-linear loads	100 kVA	Fully controllable power electronics to inject harmonics	
Motor load	200 kVA		

Preliminary Testing Capability for 1 MW demo

- Black start
- Loss of generation
- Phase unbalance
- Fault ride through
- Islanding (plan/unplanned) and reconnection
- Large inductive load
- GFL + GFM + rotating machine at various penetration
- Mix of three-phase and single-phase load
- Frequency regulation (secondary control)
- Voltage regulation (secondary control)
- Overload (individual GFM inverter)

Current work- Developing 1MW Demo Test Plan

Thank you