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2 Exascale Computing Project

Overview

• Spack Overview
• Introduction to Spack Develop 
• Overview of Spack Develop API
• Making it simpler with Spack-Manager
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Administration) responsible for the planning 

and preparation of a capable exascale 
ecosystem, including software, applications, 

hardware, advanced system engineering, and 
early testbed platforms, in support of 

the nation’s exascale computing imperative.This presentation will just be a simple overview to 
highlight capabilities.
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Spack: Package Manager++

• Package manager focused on HPC 
applications
• Spack has many attractive features:
– Complex package and environment 
configurations

– Embedded tribal HPC knowledge
– A unique, scalable, multicomponent 
development tool (spack develop)

• Spec: 
– trilinos@develop+fortran build_type=Release %gcc@10.3.0

• Environment:
– Constrain what software is available and gets built (pyenv, 

conda, etc)

# This is a Spack Environment file.
#
# It describes a set of packages to be installed, along 
with
# configuration settings.
spack:
  specs: 
  - nalu-wind
  - trilinos@develop
  view: false
  develop:
    nalu-wind:
      spec: nalu-wind@master
    trilinos:
      spec: trilinos@develop

Root
 specs

Develop 
specs
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ExaWind: A Motivating Application
• ExaWind software stack:

– Combine two loosely 
coupled CFD codes with 
entirely different 
software stacks (Trilinos 
and AMReX)

– Living on the develop 
branch of multiple 
dependencies

– Project is actively 
supporting development 
of 7+ software packages 
in the stack (CPU+GPU)

• Challenges:
– Building
– Developing
– Testing
– Deploying

Packages under active 
development
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Spack Develop
• In a spack environment develop specs 
can be added

• Develop specs are 
– If DAG_spec.satisfies(develop_spec)

• Do a build from the users source code rather than 
from spack’s staging procedure

• Perform incremental builds based on timestamp  
of files in the source directory

• Allows for arbitrary development of 
packages in the DAG
– Dependencies will get automatically rebuilt

• Allows for multiple builds from the same 
source
– Cuda and Non-Cuda builds from the same 
source code at the same time

– DAG level parallelism is available in builds 

# In this configuration you will get 
# 4 develop builds: cuda and non-cuda
# nalu-wind and trilinos coming from 
# the same sources
spack:
  specs: 
  - nalu-wind +cuda cuda_arch=70
  - nalu-wind ~cuda 
  view: false
  develop:
    nalu-wind:
      spec: nalu-wind@master
    trilinos:
      spec: trilinos@develop
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Development Environment API

• Utilize develop feature
– Create environment
– Tag the specs/packages 
you wish to develop

– Make sure the source code 
is correct (several ways to 
do this)

– Install
• To develop
– Make code changes
– Spack install (incremental 
build)

Setup 
Envrionment

• spack env create foo
• spack env activate foo
• spack add do re mi

Development 
Commands

• spack develop do@develop
• spack develop re@main
• spack develop mi@main

Final 
Touches

• spack cd --environment
• cd re
• git remote add user git@github.com:user/feature
• git fetch --all && git checkout feature
• spack install

mailto:git@github.com:user/feature
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Spack-Manager: API Reduction 
• Spack-Manager: 

– Embed machine specific natively
– Reduce the API for using spack develop

• Utilize Spack API’s to write Spack extensions
– Environment curation
– All of our scripts serve to reduce the end user API
– Can be replicated through core Spack commands and 
a little manual intervention

• A core example of this is:
– find-machine + create-env

• find-machine: a utility that allows custom python scripts to 
identify the current machine

• create-env: uses find-machine and stored configs to automate 
platform specific environments

spack env create -d [foo]

spack env activate -d [foo]

spack repo add ${SPACK_MANAGER}/repos/exawind

manually insert machine specific configs: 
packages.yaml, configs.yaml, compilers.yaml

spack add [specs]

spack env deactivatespack manager create-env –d [foo] –s [specs]



8 Exascale Computing Project

What does it look like?
spack manager create-env --spec exawind amr-wind nalu-wind
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Onboarding Developers

• Conflict: 1 command build vs a 
learning curve
– Made significant efforts to reduce the API

• Ask developers to learn 3 things about 
Spack:
– How to query the API for help i.e. --help 
and spack info

– How to read and write a Spack spec
– What the major steps in the Spack build 
process are

• Learn to speak the basics of the 
language 

I [..] was able to install Exawind using 
Spack fairly easily as a new hire. I have 
definitely had a good experience so far

- Ilker Topcuoglu (NREL)

I have to type a whole 12 
characters to compile just 2 
different codes with a zillion 
dependencies to debug my 

code
- Ganesh Vijayakumar 

(NREL)Spack Manager and Spack have saved 
me an incredible amount of time and 

headache, providing an intuitive 
framework that ensures dependency 
resolution and repeatable, shareable, 

self-documenting builds. 
- Nate deVelder (SNL)
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Pros and Cons of Spack Driven Development

Pros

• Spack is already solving the dependency issues
• Spack is scalable

– DAG parallelism
• HPC Case study: 3 compiler configurations for ExaWind

– 1.5 hours with DAG parallelism
– 4.5+ hours without

• Spack is configurable
– +cuda and ~cuda in same environment (DAG 

parallel)

• Spack is extendable
• Spack is testable
• Simplified and unified API dramatically reduces 
Dev-Ops workload

Cons

• Spack can be overwhelming
– 3-5 ways to do just about everything

• Spack build process has some quirks
– Hash based issues and confusion
– Bootstrapping and occasional ssl issues 

• Spack data management and logs make 
developers uncomfortable
– spack-build-[hash]
– spack cd -b [package]

• Spack still has some optimization to do
– spack install is a too big of a hammer for 

incremental builds
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Conclusions

• Spack is taking on a lot of challenges in the HPC software space
– Not everything is perfect, but the progress is rapid
– We can help make it better!

• Very happy with Spack as the driver for development on ExaWind
– Unified API dramatically reduces infrastructure needs
– Gives developers the tools to customize their own environments

• Cons can be mitigated with education and light scripts
• Spack-Manager is a tool for managing and reducing the Spack API with 
a particular emphasis on development
– We’d love to have more Trilinos developers test it out 



Supplementary Slides
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The Vision: Unified Tooling and Environments
• Common environment for 
administrators and developers 
leads to reuse and consistency
– I’m building exactly what is on 
my dashboard

• Common deployment tools 
means common interface for 
analysts

• A machine agnostic interface 
makes this highly deployable

Daily Build Environment

Nightly Tests/CDash Docker 
Image/Snapshot

Module Creation Github CI/CD

Admin Workflow

Development 
Environment

Module Creation

Developer Workflow

- module use [/path/to]/spack-manager/modules
- module load xyz

End User Environment
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Spack-Manager

Spack-Manager Layout

• Spack-Manager
– Project agnostics 
code/scripts
• Tooling and testing

– Pre-configured 
locations

– Project specific 
information
• Customize packages
• Create machine specific 
implementations

• Add machine specific 
templates

 

Spack-Scripting

scripting 

unit tests 

manager

environments

modules

views

Project Specific 
Information

repo

configs

scripts

templates

Spack
(submodule)

scripts
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Bash ”quick-commands”

• Wrap the functionality of basic 
setup and development 
commands together

• Common features:
– Shell source Spack/Spack-
Manager

– Create an anonymous Spack 
environment

– Activate the created environment

• Development specific 
assumptions:
– All concrete spec’s are intended 
as develop specs 
([name]@[version])

– Anything not pre-cloned should be 
fetched via spack develop

• quick-create-dev --spec do@develop re@main mi@main
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Externals: Re-Using Binaries

• Spack has several different ways to 
reuse binaries
– Upstreams
– Binary Caches
– --reuse
– Externals

• First 3 rely directly on the concertizer 
to make the “best” decision

• Development workflow often wants 
specific binaries

• Created a way to auto generate 
externals in an externals.yaml file

• “Snapshots” are time-dated versions of 
the software installed on each system

Environment

View

Snapshot

ExaWind

Nalu-Wind

Trilinos

TPL

AMR-Wind

TPL
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Containers

• Partnered with E4S to create nightly 
containers

• Software provenance preserved through 
history of containers on Docker Hub 

• Infrastructure makes containerization 
trivial
– E4S added 4 lines to their base Ubuntu 
docker configuration

• With externals + container we can drive 
our CI for every package through 1 image

• Developers can download image and 
have same environment on laptops


