This papel d b b| t e te h I sults and analysis. Any subijectiv s that might be expressed in -
the paper t nec Iy repre th e views of fth US D p artment fE gy th U ited States Gov mment. SAND2022-14726C

Spack Driven Software Development and Spack-Manager

Philip Sakievich (SNL) Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia,
psakiev@sandia.qov LLC, a wholly owned subsidiary of Honeywell International Inc., for the

U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

10/27/2022

cCP

EXASCALE COMPUTING PROJECT

S5 U.S. DEPARTMENT OF Office of

ENERGY Science SAND2022-XXXXX

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

NS

National Nuclea urity Administratio

mailto:psakiev@sandia.gov

Overview

* SpaCk Overview ECP: Funding Statement
. This research was supported by the Exascale
 Introduction to Spack Develop Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of
e Overview of Spack Deve|op API Energy organizations (Office of Science and

the National Nuclear Security
- - : - _ Administration) responsible for the planning
* Makmg It Slmpler with SpaCk Manager and preparation of a capable exascale
ecosystem, including software, applications,
hardware, advanced system engineering, and
early testbed platforms, in support of

This presentation will just be a simple overview to the nation’s exascale computing imperative.
highlight capabilities.

Acknowledgements: Jon Rood, Timothy Smith,
Luke Peyralans, Spack Dev Team, Spack
community

"ﬁ \
\ EXASCALE

) —) COMPUTING
PROJECT

2 Exascale Computing Project \(

Spack: Package Manager++

« Package manager focused on HPC

applications

« Spack has many attractive features:

— Complex package and environment
configurations

— Embedded tribal HPC knowledge

— A unique, scalable, multicomponent
development tool (spack develop)

* Spec:

— trilinos@develop+fortran build_type=Release %gcc@10.3.0

 Environment:

— Constrain what software is available and gets built (pyenv,
conda, etc)

3 Exascale Computing Project

This is a Spack Environment file.

#

It describes a set of packages to be installed, along
with

configuration settings.

spack:
specs: Root
- nalu-wind specs
- trilinos@develop
view: false
develop:
nalu-wind:
spec: nalu-wind@master Develop
trilinos: Specs
spec: trilinos@develop
;-..\\ EXASCALE
(L s

ExaWind: A Motivating Application

 ExaWind software stack:

— Combine two loosely
coupled CFD codes with
entirely different _
software stacks (Trilinos
and AMReX)

— Living on the develop
branch of multiple
dependencies

— Project is actively
supporting development
of 7+ software packages
in the stack (CPU+GPU)

* Challenges:

— Building

— Developing

— Testing

— Deploying

4 Exascale Computing Project

ackages under active
development

[11’hadi +5£3,,1 - 2621021 {‘.f?wquz]

phgoonfal & BAFureck

f";\\

=

EXASCALE
COMPUTING
PROJECT

\

Spack Develop

* In a spack environment develop specs
can be added

* Develop specs are

— If DAG_spec.satisfies(develop_spec)

* Do a build from the users source code rather than
from spack’s staging procedure

* Perform incremental builds based on timestamp
of files in the source directory

* Allows for arbitrary development of
packages in the DAG
— Dependencies will get automatically rebuilt
 Allows for multiple builds from the same
source

— Cuda and Non-Cuda builds from the same
source code at the same time

— DAG level parallelism is available in builds

5 Exascale Computing Project

In this configuration you will get
4 develop builds: cuda and non-cuda
nalu-wind and trilinos coming from
the same sources
spack:
specs:
- nalu-wind +cuda cuda_arch=70
- nalu-wind ~cuda
view: false
develop:
nalu-wind:
spec: nalu-wind@master
trilinos:
spec: trilinos@develop

=\
\] EXASCALE
) COMPUTING

PROJECT

Development Environment API

* spack env create foo
* spack env activate foo

 Utilize develop feature |
_ Setup - spack add do re mi
— Create environment Envrionment

— Tag the specs/packages

you wish to develop

— Make sure the source code k develop doQde
i * spack develop re@main
IS CorreCt (Several WayS tO BIVV/E[e]elng(=al8 « spack develop mi@main

do thiS) Commands

* spack develop do@develop

— |nstall

* To develop
— Make code changes
— Spack install (incremental

* spack cd --environment

ecdre

« git remote add user git@github.com:user/feature
« git fetch --all && git checkout feature

* spack install

r':,,\\

EXASCALE
(\) —) COMPUTING
6 Exascale Computing Project &_’ PROJECT

mailto:git@github.com:user/feature

Spack-Manager: APl Reduction

« Spack-Manager: spack env create -d [foo]
@

— Embed machine specific natively
— Reduce the API for using spack develop

» Utilize Spack API's to write Spack extensions spack env activate -d [foo]
— Environment curation @

— All of our scripts serve to reduce the end user API

— Can be replicated through core Spack commands and SIPFIES (G el B PO A EISRYIE posieilie

a little manual intervention
4

* Acore example of this is: manually insert machine specific configs:
— find-machine + create-env packages.yaml, configs.yaml, compilers.yaml|
» find-machine: a utility that allows custom python scripts to

identify the current machine
* create-env: uses find-machine and stored configs to automate spack add [specs]
platform specific environments

L

spack manager create-env —d [foo] —s [specs] <)

—

(\\ EXASCALE
7 Exascale Computing Project &.—

—, COMPUTING
PROJECT

What does it look like?

spack manager create-env

1 spock.yaml 1 include. yanl
1 Spock: 1 Papas:
1 inclwde: [include.yaml 1 - Sspacks. . r
2 CAMEF zation: together 2 packoges:
3 view: 3 hypre:
q specd: [exowind, amr-wind, nalu-wind q varionts:
5 wversion:
6 all:
7 target: [
[compiler:
A providers
mpi:
blas: [
lapack
warionts
boost:

wersion:
warionts
hd 5
wersion:
warionts
metodf-c
wersion:
warionts
openfast
wersiaor
warionts

26 parallel-mne
T wersior
tiogo

29 wersior

B yanl-cpp

31 wersiar

32 trilinos

33 WEFEL1OR

34 warionts
gtest+hdf5-hy
stk=stratimik

35 gotype

6 config

37 mirrors

34 eds

1% source_cach

)

sC_coche

build_stoge
Sspacks

concretizer

8 Exascale Computing Project

55

ntkps:/fcoche.eds

--spec exawind amr-wind nalu-wind

epad.exowind

+Shared
develap

xBE_ 64
[apple-clang, gee, clang]

mpich, opermpi]

netlib-lapack]
[Aetlib-lapack]
build_ type=Release +hpi
1.76.8]

cxxstd=14

1.18.7]
+oxx+hl

4.7.4)
+parallel-netcdf moxdins=65536 moxvars=5Z4Z88

master]
+OAE
todf

s I |

develap]
B.6.3]

develap]

—adiosi-al loptpkgs—-anesos+amesos 2-anasazl-az tec+belos+boost—Chaco-conpl ex—debug-dtk-epetro-epetraext+exodus+explicit_template_instantiation-flooct+Fortron-Ffortrilinos+gle:
pre-1 fpack+1 fpackZ-intrepld-intrepldi-isorroplaskokkos—nesqul besmet il s—minl £09 - | +mp | +mue Lu—mamps—-nox—openmp-pha Lans-pi re—python-rol-rythics—socodo+ shards-shy Lu+
te-sparse-superlu-super lu-di st-teko-tempus+teuchos+tpetrosuvm-x11-xsdkflags=z 1 ib+zol tanszal tang
crastd=ld bulld_type=Release

en

ong

1o
=/ . spack/downloads
Sspacks focache

]

/stoge
clingo

COMPUTING
PROJECT

Onboarding Developers

 Conflict: 1 command build vs a
learning curve

— Made significant efforts to reduce the API

* Ask developers to learn 3 things about
Spack:

— How to query the API for help i.e. --help
and spack info

— How to read and write a Spack spec
— What the major steps in the Spack build
process are

 Learn to speak the basics of the
language

9 Exascale Computing Project

| [..] was able to install Exawind using
Spack fairly easily as a new hire. | have
definitely had a good experience so far
- llker Topcuoglu (NREL)

| have to type a whole 12
characters to compile just 2
different codes with a zillion
dependencies to debug my

code
- Ganesh Vijayakumar

Spack Manager eg,/yclj? g%ck have saved
me an incredible amount of time and
headache, providing an intuitive
framework that ensures dependency
resolution and repeatable, shareable,
self-documenting builds.

- Nate deVelder (SNL)

—

"ﬁ \
\ EXASCALE

) —) COMPUTING
PROJECT

\

Pros and Cons of Spack Driven Development

Pros Cons

* Spack is already solving the dependency issues * Spack can be overwhelming

- Spack is scalable — 3-5 ways to do just about everything

— DAG parallelism » Spack build process has some quirks
« HPC Case study: 3 compiler configurations for ExaWind — Hash based issues and confusion
— 1.5 hours with DAG parallelism — Bootstrapping and occasional ssl issues

— 4.5+ hours without

» Spack data management and logs make

* Spack is configurable developers uncomfortable
— +cuda and ~cuda in same environment (DAG — spack-build-[hash]
parallel)

— spack cd -b [package]

* Spack is extendable « Spack still has some optimization to do

* Spack is testable — spack install is a too big of a hammer for

[tal build
« Simplified and unified API dramatically reduces heremental bulias
Dev-Ops workload

’—'ﬁ \
\ EXASCALE

) —) COMPUTING
PROJECT

10 Exascale Computing Project \(

Conclusions

» Spack is taking on a lot of challenges in the HPC software space
— Not everything is perfect, but the progress is rapid
— We can help make it better!

* Very happy with Spack as the driver for development on ExaWind
— Unified API dramatically reduces infrastructure needs
— Gives developers the tools to customize their own environments

» Cons can be mitigated with education and light scripts

« Spack-Manager is a tool for managing and reducing the Spack API with
a particular emphasis on development

— We'd love to have more Trilinos developers test it out

"ﬁ \
\ EXASCALE

) —) COMPUTING
PROJECT

11 Exascale Computing Project \(

Supplementary Slides

EEEEEEEEEEEEEEEEEEEEEEEE

The Vision: Unified Tooling and Environments
Admin Workflow

« Common environment for
administrators and developers
leads to reuse and consistency

— I'm building exactly what is on
my dashboard

Daily Build Environment

: e Common deployment tools
Nightly Tests/CDash Docker means comrﬂor%/ interface for
Image/Snapshot analysts

~

7
:’I - A machine agnostic interface
Module Creation |/ Github Cl/CD
II
/i
/]

makes this highly deployable

\ Developer Workflow
| 4
End User Environment \ Development

Environment
- module use [/path/to]/spack-manager/modules
- module load xyz -« /

Module Creation

13 Exascale Computing Project

Spack-Manager Layout

* Spack-Manager /

Spack-Manager

— Project agnostics
code/scripts

Spack
(submodule)

|

* Tooling and testing

scripts

)

f Spack-Scripting\

. \ [- N
— Pre-configured - N scripting environments
locations Project Specific N J
: . Information
— Project specific i J { manager J i)
information . repo \,) i modules)
» Customize packages configs J
« Create machine specific (. :
implementations P | scripts j { unit tests J { views J
* Add machine specific templates J
templates \ K J \ /
(CIP e

14 Exascale Computing Project

Bash "quick-commands”

* Wrap the functionality of basic S
setup and development tep

commands together spack-start

« Common features:
— Shell source Spack/Spack-

Create an environment

Manager Activate an environment
— Create an anonymous Spack
environment Add root specs
— Activate the created environment
. Add develop specs
* Development specific
assumptions: Add externals
— All concrete spec’s are intended : :
as develop specs Concretize and install

([name]@)][version])

— Anything not pre-cloned should be
fetChed via spack develop

quick-create
X
X

X

quick-create-dev

X

X

X

quick-develop
X
X

X

* quick-create-dev --spec do@develop re@main mi@main

15 Exascale Computing Project

—

Y

\

] EXASCALE
COMPUTING
PROJECT

Externals: Re-Using Binaries

« Spack has several different ways to
reuse binaries

— Upstreams + .
— Binary Caches

— --reuse

— Externals °

* First 3 rel dlrectly on the concertizer
to make the “best” decision

VR

* Development workflow often wants ExaWind
specific binaries ~
A AN
* Created a way to auto generate Nalu-Wind | AMR-Wind
externals in an externals.yaml file N \E
* “Snapshots” are time-dated versions of " Triinos TPL
the software installed on each system ~ ~
B N —

TPL

\\ EXASCALE
16 Exascale Computing Project \

) —] COMPUTING
PROJECT

Containers

 Partnered with E4S to create nightly oY

containers ° dOCer
« Software provenance preserved through .

history of containers on Docker Hub GItHub Actions

* Infrastructure makes containerization
trivial
— E4S added 4 lines to their base Ubuntu
docker configuration

» With externals + container we can drive
our Cl for every package through 1 image

* Developers can download image and
have same environment on laptops

’—'ﬁ \
\ EXASCALE

) —) COMPUTING
PROJECT

17 Exascale Computing Project \(

