
Spack Driven Software Development and Spack-Manager

Philip Sakievich (SNL)
psakiev@sandia.gov

10/27/2022

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia,

LLC, a wholly owned subsidiary of Honeywell International Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration

under contract DE-NA0003525.

SAND2022-XXXXX

SAND2022-14726CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

mailto:psakiev@sandia.gov

2 Exascale Computing Project

Overview

• Spack Overview
• Introduction to Spack Develop
• Overview of Spack Develop API
• Making it simpler with Spack-Manager

Acknowledgements: Jon Rood, Timothy Smith,
Luke Peyralans, Spack Dev Team, Spack
community

ECP: Funding Statement
This research was supported by the Exascale

Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of
Energy organizations (Office of Science and

the National Nuclear Security
Administration) responsible for the planning

and preparation of a capable exascale
ecosystem, including software, applications,

hardware, advanced system engineering, and
early testbed platforms, in support of

the nation’s exascale computing imperative.This presentation will just be a simple overview to
highlight capabilities.

3 Exascale Computing Project

Spack: Package Manager++

• Package manager focused on HPC
applications
• Spack has many attractive features:
– Complex package and environment
configurations

– Embedded tribal HPC knowledge
– A unique, scalable, multicomponent
development tool (spack develop)

• Spec:
– trilinos@develop+fortran build_type=Release %gcc@10.3.0

• Environment:
– Constrain what software is available and gets built (pyenv,

conda, etc)

This is a Spack Environment file.
#
It describes a set of packages to be installed, along
with
configuration settings.
spack:
 specs:
 - nalu-wind
 - trilinos@develop
 view: false
 develop:
 nalu-wind:
 spec: nalu-wind@master
 trilinos:
 spec: trilinos@develop

Root
 specs

Develop
specs

4 Exascale Computing Project

ExaWind: A Motivating Application
• ExaWind software stack:

– Combine two loosely
coupled CFD codes with
entirely different
software stacks (Trilinos
and AMReX)

– Living on the develop
branch of multiple
dependencies

– Project is actively
supporting development
of 7+ software packages
in the stack (CPU+GPU)

• Challenges:
– Building
– Developing
– Testing
– Deploying

Packages under active
development

5 Exascale Computing Project

Spack Develop
• In a spack environment develop specs
can be added

• Develop specs are
– If DAG_spec.satisfies(develop_spec)

• Do a build from the users source code rather than
from spack’s staging procedure

• Perform incremental builds based on timestamp
of files in the source directory

• Allows for arbitrary development of
packages in the DAG
– Dependencies will get automatically rebuilt

• Allows for multiple builds from the same
source
– Cuda and Non-Cuda builds from the same
source code at the same time

– DAG level parallelism is available in builds

In this configuration you will get
4 develop builds: cuda and non-cuda
nalu-wind and trilinos coming from
the same sources
spack:
 specs:
 - nalu-wind +cuda cuda_arch=70
 - nalu-wind ~cuda
 view: false
 develop:
 nalu-wind:
 spec: nalu-wind@master
 trilinos:
 spec: trilinos@develop

6 Exascale Computing Project

Development Environment API

• Utilize develop feature
– Create environment
– Tag the specs/packages
you wish to develop

– Make sure the source code
is correct (several ways to
do this)

– Install
• To develop
– Make code changes
– Spack install (incremental
build)

Setup
Envrionment

• spack env create foo
• spack env activate foo
• spack add do re mi

Development
Commands

• spack develop do@develop
• spack develop re@main
• spack develop mi@main

Final
Touches

• spack cd --environment
• cd re
• git remote add user git@github.com:user/feature
• git fetch --all && git checkout feature
• spack install

mailto:git@github.com:user/feature

7 Exascale Computing Project

Spack-Manager: API Reduction
• Spack-Manager:

– Embed machine specific natively
– Reduce the API for using spack develop

• Utilize Spack API’s to write Spack extensions
– Environment curation
– All of our scripts serve to reduce the end user API
– Can be replicated through core Spack commands and
a little manual intervention

• A core example of this is:
– find-machine + create-env

• find-machine: a utility that allows custom python scripts to
identify the current machine

• create-env: uses find-machine and stored configs to automate
platform specific environments

spack env create -d [foo]

spack env activate -d [foo]

spack repo add ${SPACK_MANAGER}/repos/exawind

manually insert machine specific configs:
packages.yaml, configs.yaml, compilers.yaml

spack add [specs]

spack env deactivatespack manager create-env –d [foo] –s [specs]

8 Exascale Computing Project

What does it look like?
spack manager create-env --spec exawind amr-wind nalu-wind

9 Exascale Computing Project

Onboarding Developers

• Conflict: 1 command build vs a
learning curve
– Made significant efforts to reduce the API

• Ask developers to learn 3 things about
Spack:
– How to query the API for help i.e. --help
and spack info

– How to read and write a Spack spec
– What the major steps in the Spack build
process are

• Learn to speak the basics of the
language

I [..] was able to install Exawind using
Spack fairly easily as a new hire. I have
definitely had a good experience so far

- Ilker Topcuoglu (NREL)

I have to type a whole 12
characters to compile just 2
different codes with a zillion
dependencies to debug my

code
- Ganesh Vijayakumar

(NREL)Spack Manager and Spack have saved
me an incredible amount of time and

headache, providing an intuitive
framework that ensures dependency
resolution and repeatable, shareable,

self-documenting builds.
- Nate deVelder (SNL)

10 Exascale Computing Project

Pros and Cons of Spack Driven Development

Pros

• Spack is already solving the dependency issues
• Spack is scalable

– DAG parallelism
• HPC Case study: 3 compiler configurations for ExaWind

– 1.5 hours with DAG parallelism
– 4.5+ hours without

• Spack is configurable
– +cuda and ~cuda in same environment (DAG

parallel)

• Spack is extendable
• Spack is testable
• Simplified and unified API dramatically reduces
Dev-Ops workload

Cons

• Spack can be overwhelming
– 3-5 ways to do just about everything

• Spack build process has some quirks
– Hash based issues and confusion
– Bootstrapping and occasional ssl issues

• Spack data management and logs make
developers uncomfortable
– spack-build-[hash]
– spack cd -b [package]

• Spack still has some optimization to do
– spack install is a too big of a hammer for

incremental builds

11 Exascale Computing Project

Conclusions

• Spack is taking on a lot of challenges in the HPC software space
– Not everything is perfect, but the progress is rapid
– We can help make it better!

• Very happy with Spack as the driver for development on ExaWind
– Unified API dramatically reduces infrastructure needs
– Gives developers the tools to customize their own environments

• Cons can be mitigated with education and light scripts
• Spack-Manager is a tool for managing and reducing the Spack API with
a particular emphasis on development
– We’d love to have more Trilinos developers test it out

Supplementary Slides

13 Exascale Computing Project

The Vision: Unified Tooling and Environments
• Common environment for
administrators and developers
leads to reuse and consistency
– I’m building exactly what is on
my dashboard

• Common deployment tools
means common interface for
analysts

• A machine agnostic interface
makes this highly deployable

Daily Build Environment

Nightly Tests/CDash Docker
Image/Snapshot

Module Creation Github CI/CD

Admin Workflow

Development
Environment

Module Creation

Developer Workflow

- module use [/path/to]/spack-manager/modules
- module load xyz

End User Environment

14 Exascale Computing Project

Spack-Manager

Spack-Manager Layout

• Spack-Manager
– Project agnostics
code/scripts
• Tooling and testing

– Pre-configured
locations

– Project specific
information
• Customize packages
• Create machine specific
implementations

• Add machine specific
templates

Spack-Scripting

scripting

unit tests

manager

environments

modules

views

Project Specific
Information

repo

configs

scripts

templates

Spack
(submodule)

scripts

15 Exascale Computing Project

Bash ”quick-commands”

• Wrap the functionality of basic
setup and development
commands together

• Common features:
– Shell source Spack/Spack-
Manager

– Create an anonymous Spack
environment

– Activate the created environment

• Development specific
assumptions:
– All concrete spec’s are intended
as develop specs
([name]@[version])

– Anything not pre-cloned should be
fetched via spack develop

• quick-create-dev --spec do@develop re@main mi@main

16 Exascale Computing Project

Externals: Re-Using Binaries

• Spack has several different ways to
reuse binaries
– Upstreams
– Binary Caches
– --reuse
– Externals

• First 3 rely directly on the concertizer
to make the “best” decision

• Development workflow often wants
specific binaries

• Created a way to auto generate
externals in an externals.yaml file

• “Snapshots” are time-dated versions of
the software installed on each system

Environment

View

Snapshot

ExaWind

Nalu-Wind

Trilinos

TPL

AMR-Wind

TPL

17 Exascale Computing Project

Containers

• Partnered with E4S to create nightly
containers

• Software provenance preserved through
history of containers on Docker Hub

• Infrastructure makes containerization
trivial
– E4S added 4 lines to their base Ubuntu
docker configuration

• With externals + container we can drive
our CI for every package through 1 image

• Developers can download image and
have same environment on laptops

