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2 | Abstract

Investigations are underway at Sandia National Laboratories looking into
characterization and optimization of bremsstrahlung x-ray diodes operating in the
>10 MeV regime using the CHICAGO™ particle-in-cell code. These diodes
typically use a hollowed-cathode geometry to form a circular beam on a high Z
metal target. This paper will discuss driver target impedance matching, look at
beam uniformity on target, estimate anode surface temperatures, and examine near
and far-field dose predictions. Other cathode geometries such as a solid
hemispherical ball will be considered as well. All geometries are designed to keep
the anode surface temperature below 400° C to prevent ion formation and beam
pinching to the axis. Anode target geometry will be discussed including the
advantages and disadvantages of specific materials such as titanium and tantalum.
Comparisons will be made to previous HERMES III and RITS-6 experimental
bremsstrahlung diodes data.



3 I QOutline

Qverview

*HERMES III hollow-cathode diode geometry at 20MeV

* Comparison of new PIC simulations to historical data for model verification

*Scaled, lower voltage, hollow-cathode geometry PIC simulations at 13MeV
* New machine parameters

*Solid, semi-hemispherical cathode geometry PIC simulations at 13MeV
* Reduction of high-current density on axis

*RITS-6 experimental data using semi-hemispherical shaped cathode at 10MeV

*Summary and Future Work
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Objectives

Design a new e-beam bremsstrahlung diode for Experiments
operations at endpoint energies >10 MeV.

Optimize on target beam uniformity and total

x-ray dose output.

Allow multiple shots without breaking vacuum

by maintaining a minimal (< 400°C) surface
temperature rise.

Design diode to fit within a small (= Ift. Theory
diameter) spatial region, to enable ease of

coupling to various experimental facilities.

Develop a predicative modeling capability, using PIC (ex. CHICAGO™ and EMPIRE)
and radiation transport codes (ITS, CYLTRAN), to tailor diode geometries to
accelerator drive parameters.

Expand theoretical interpretation of e-beam diode physics to explain phenomena
such as current filamentation, electron bunching, and instabilities.

Modeling/
Simulation

Predictive Capability



HERMES Ill Pulsed-Power Accelerator
at Sandia National Laboratories
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s | HERMES lll Bremsstrahlung Diode
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. CHICAGO™ Simulation model[?3]

Cathode

* Typical diode configuration on HERMES |l
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RGA Signal (AU)

Anode Foil: Surface Temperature Measurements and Calculations
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o | HERMES lll Peak and Average Dose Measurements
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1 | Affecting MITL Flow Current for Improved Beam-Target Uniformity
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MITL flow at the cathode.




2 | Future CHICAGO™ Modeling Work

* 3D simulations to investigate beam stability

* Perform x-ray dose calculations using CYLTRAN
codel®]

* Validate against new experiments on HERMES Il
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RITS-6 Pulsed-Power Accelerator at Input power
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) ‘ RITS 6: Solid Hemispherical Cathode
Results Showing Beam Non-Uniformities

End on Cherenkov light emission at anode location

Early-time Late-time
camera gate camera gate

Emission extends beyond the tip of the cathode.
Images show structure on the cathode, and
end-on Cherenkov images suggests
inhomogeneous current density at the anode.

[8] T.J. Webb, et. al., IEEE Trans. Plasma Sci., 38,923 (2010).
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s I Future Work

* Continue investigations of cathode geometry modifications (ex. hemispherical cathode)

* Minimize current density and surface heating rates on target (beam uniformity)

* Determine surface heating limits (A/cm?) for ion formation and beam pinching for various

relevant materials

* Optimize multilayer targets, materials, and thicknesses for highest dose production

» Explore advanced concepts such as heating and/or cleaning of diode surfaces[®!°l

* Explore beam-angle effects on total dose productionl!']

* Explore the effects of vacuum and surface contamination on ion formation

e Conduct new experiments on suitable pulsed-power drivers, including HERMES lIl, at multiple

voltages and currents to test various diode configurations for PIC model validation

* Calculate and measure near and far-field dose profiles for various diode geometries

* Measure x-ray output energy spectrum

[9] B.V.Weber,et. al., IEEE Trans. Plasma Sci., 30, 1806 (2002).
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[11]T.). Renk, et. al., Phys. Plasmas 29,023106 (2022).






