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Motivation




Munson-Dawson model

1. Advantages
1. Well-known
2. Easy to calibrate against constant stress tests

3. Captures most low and medium stress behavior

2. Small Disadvantages
1. Highly phenomenological

1. é\fp - é’[l’ + éSS

2. Cannot be fit into framework of Rational Thermodynamics

3. Larger Disadvantages Relevant to Empty Areas at WIPP
1. Does not include damage and healing
2. Cannot capture high strain rate (high stress) behavior
3. Cannot capture re-hardening during non-monotonic loading
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5 ‘ Damaged, High Strain Rate, Behavior
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Experimental measurements from: Salzer et al. (2015) and Dusterloh et al. (2015). I



6 ‘ Damaged, High Strain Rate, Behavior
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7 ‘ Damage-Free, High Strain Rate, Behavior
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Damage-Free, High Strain Rate, Munson-Dawson Predictions
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Experimental measurements from: Salzer et al. (2015) and Dusterloh et al. (2015).




Model Overview




10 | Viscoplastic Branches
A (Rough) Steady-State

Pressure Solution and Dislocation Glide Deformation Mechanism Map
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1 | Microstructural Observations

Wavy Slip Bands A (Rough) Steady-State
Deformation Mechanism Map

Uniform Dislocation

Density

0.4
0/0,,

Raj, S. V. and Pharr, G. (1989). “Creep substructure formation in sodium

chloride single crystals in the power law and exponential creep regimes”. ®m =1077K
In: Materials Science and Engineering: A 122.2, pp. 233-242. E2 =10 GPa
Carter, NL, Horseman, ST, Russell, JE, and Handin, J (1993). Rheology Average grain size = 10 mm

of rocksalt. Journal of Structural Geology. Vol 15. No 9-10. pp 1257-1271.
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12 ‘ Steady-State Strain Rate Calibration 6= 60°C m
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parameters governing creep of rocksalt by pressure solution. In: Geological Society, London, Special Publications 54.1, pp. 215-227. 1 0_1 2] I
Garofalo, F. (1963). An empirical relation defining the stress dependence of minimum creep rate in metals. In: Trans. AIME 227, pp. 351— 1 OO
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13 ‘ Steady-State Strain Rate Calibration m
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4 | Strain Rates While Hardening

Strain Rates
(proportional, monotonic, loading)
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s 1| Strain Rates While Hardening
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s | Strain Rates While Hardening

Strain Rates
(proportional, monotonic, loading)
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17 | Dislocation Glide Hardening Uniform Disiocation

Density

Equivalent Stress Decomposition
(proportional, monotonic, loading)

Drag Stress Contribution

2 1/G
8dg 3

G exp (—Gg/g)

599 = y sinh™

Raj, S. V. and Pharr, G. (1989). “Creep substructure formation in sodium chloride single crystals in the
power law and exponential creep regimes”. In: Materials Science and Engineering: A 122.2, pp. 233-242.
Carter, NL, Horseman, ST, Russell, JE, and Handin, J (1993). Rheology of rocksalt. Journal of Structural
Geology. Vol 15. No 9-10. pp 1257-1271.




18 ‘ Constant Strain Rate Behavior
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Calibrations




o I Hardening Transition from Low to Medium Stresses (Strain Rates)

WIPP Salt, Constant Stress, Strain History
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Experimental measurements from: Salzer et al. (2015) and Dusterloh et al. (2015).



.1 I Hardening Transition from Low to Medium Stresses (Strain Rates)

Transient Strain After 50 days at 8= 60 °C
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High Constant Strain Rates at 6= 27 °C

|
» | Selected Hardening Measurements on WIPP Salt m
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Experimental measurements from: Salzer et al. (2015) and Dusterloh et al. (2015). I



High Constant Strain Rates at 6= 27 °C

|
23 ‘ Calibration 1A1: Drag Stress Only m
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Experimental measurements from: Salzer et al. (2015) and Dusterloh et al. (2015). I



24 ‘ Calibration 1A2: Drag Stress Only

High Constant Strain Rates at 6= 27 °C

. . 70
Transient Strain After 50 days at &= 60 °C B
Low Medium High - —- Sim, Cal 1A2 -
102 Stresses Stresses Stresses 60 1 s
/,,’ ,—’—
50 . ""—-—
107 - ¢ ="
(MPa) e
40 P C i
O | -
10 . 4 ¥
[ J II ,/J
- 30 - /
10" ° /
(4 /

] o 20 A
1072 g

] o EXp 1

| — Sim, Cal 1A2 104 - 107 s
10—3 — - —_— - 10_51/8

10° 10! 102 -=-10"%1/s
E—— d' (MPa) O T T T T
0 5 10 15 20 25

Experimental measurements from: Salzer et al. (2015) and Dusterloh et al. (2015).

——— & E5(t) (%)

&
\
|



25 ‘ Calibration 1C: Drag Stress and Back Stress

Transient Strain After 50 days at &= 60 °C
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Non-Monotonic Loading




27 | A “Gedankenexperiment”

Mechanical Responses
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Original "Gedankenexperiment” from: Mughrabi, H. (1983) Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metallurgica. Vol. 31. No. 9. pg. 1367-1379




28 | A “Gedankenexperiment”

Mechanical Responses
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Original "Gedankenexperiment” from: Mughrabi, H. (1983) Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metallurgica. Vol. 31. No. 9. pg. 1367-1379




29 ‘ Bauschinger Effect
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30 ‘ Re-hardening during Non-Monotonic Loading

Constant Strain Rate Test on Artificial Salt
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31 ‘ Re-hardening during Non-Monotonic Loading

Constant Strain Rate Test on Artificial Salt Multi-Stage Constant Stress Test on Cayuta Salt
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32 ‘ Re-hardening during Non-Monotonic Loading

Constant Strain Rate Test on Artificial Salt
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33

Summary & Future Work




1. Summary
1. Largely phenomenological model, but key decisions were motivated by micro-physical observations.
2. Pressure solution and dislocation glide branches

3. Combined drag and back stress hardening enables one to capture hardening at low, medium, and high
strain rates, as well as re-hardening behavior after non-monotonic loading.

2. Future work
1. Polish numerical implementation
2. Simulate more underground structures

3. Add damage and healing

|
2 I Summary & Future Work m
|
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Avery Island Salt, Stress vs. Strain Curves at =100 °C
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Experimental measurements from: Horseman, ST and Handin, J. (1990) and Carter, NL,
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37 ‘ Hardening Transition from Medium to High Strain Rates (Stresses)

Avery Island Salt, Stress vs. Strain Curves at 8= 100 °C
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38 ‘ Hardening Transition from Medium to High Strain Rates (Stresses)

Avery Island Salt, Stress vs. Strain Curves at 8= 100 °C
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39 ‘ Re-hardening During Non-Monotonic Loading

Cayuta Salt, Stress and Strain Histories
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40 ‘ Dislocation Glide Hardening

Drag Stress Evolution Equation

Yo
e
y y

Back Stress Evolution Equation
(proportional, monotonic, loading)

—~—

b = B (1—2)3@9
b

—10%1/s —1071/s —10"01/s
— 10%1/s —1081/s — 107" 1/s
— 10 %1/s — 107%1/s — 1072 1/s
300
y
(MPa)
200 -
100
0 20 40 60 80 100
— Szz_gzz(tO) (°/°)
15
b
(MPa)
10 A
5_
0 -

0.0 0.2 0.4 0.6

0.8 1.0

— SZZ_SZZ(tO) (°/°)




41 ‘ Dislocation Glide Hardening
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« | Dislocation Glide Hardening
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«s | Dislocation Glide Steady-State

Steady-State Strain Rates

: P
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« | Dislocation Glide Steady-State

Steady-State Strain Rates
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»s | Dislocation Glide Hardening

Equivalent Dislocation Glide Strain Rate
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s | Isotropic Dislocation Glide Hardening

Equivalent Dislocation Glide Strain Rate
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«» | Isotropic Dislocation Glide Hardening

Deviatoric Plane

Dynamic Yield Surface
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«s | Isotropic Dislocation Glide Hardening m
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» 1 1sotropic and Kinematic Dislocation Glide Hardening

Deviatoric Plane

Dynamic Yield Surface
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5o | Isotropic and Kinematic Dislocation Glide Hardening
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2 | Isotropic and Kinematic Dislocation Glide Hardening
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‘ Constant Strain Rate Tests on Artificial Salt

Fig. 1.

400 T T I I
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Heard, H. (1972). Steady-state flow in polycrystalline halite
at pressure of 2 kilobars. Flow and fracture of rocks. Vol
16. pp 191-209.

Differential stress-strain curves for polycrystalhne halite extended at 2 kb, é = 1.5 X 1073

to 1.5 X 10—8 sec™, and 100°C.
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55 ‘ Back Stress Measurements m

Creep Responses due to Small Stress Changes

Asse Rock Salt
og .
—— Back Stress Measurements on Single Phase Metals
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Hunsche, U. 1988. Measurement of creep in rock salt at small strain rates. Proceedings of the 2

Conference on the Mechanical Behavior of Salt. Pg. 187-196 20— 7 I
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Multi-stage Constant Stress Predictions (Cal 1C )

(different stresses than on Landes salt)
: 4
Multi-stage Constant Stress Test on Landes Salt G
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s | Dislocation Glide Hardening Saturation (Steady-State)

Equivalent Stress Decomposition
(proportional, monotonic, loading)
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58 ‘ Bauschinger Effect: Isotropic Hardening Only
Artificial Rock Salt
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Artificial Rock Salt
40 Dynamic Yield Surface Equivalent Stress

Elastic moduli and stress
differences scaled by 0.73X
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59 ‘ Bauschinger Effect: Isotropic Hardening Only m
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Experimental measurements from Aubertin et al. (1999) I



Artificial Rock Salt
40 Dynamic Yield Surface Equivalent Stress

Elastic moduli and stress
differences scaled by 0.73X
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61 ‘ Bauschinger Effect: Isotropic Hardening Only

Artificial Rock Salt

Elastic moduli and stress
differences scaled by 0.73X

and 0.92X, respectively, in
simulations.
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62 ‘ Bauschinger Effect: Isotropic + Kinematic Hardening
Artificial Rock Salt
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63 ‘ Bauschinger Effect: Isotropic + Kinematic Hardening
Artificial Rock Salt
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Artificial Rock Salt
40 Dynamic Yield Surface Equivalent Stress

Elastic moduli and stress
differences scaled by 0.73X
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65 ‘ Bauschinger Effect: Isotropic + Kinematic Hardening
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66 | Re-hardening During Non-Monotonic Loading

Asse Salt, Strain Histories
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67 ‘ Stress Drop Behavior
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69 | Gas Storage Cavern Simulation Results

Wellhead Pressure and Cavern Volume Loss Histories
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