

Optimal Mobile Energy Storage Pre-Placement for Black-Start Restoration

Joshua Yip¹, Manuel Garcia², Brian Pierre², Erhan Kutanoglu³, and Surya Santoso¹

¹Electrical and Computer Engineering
University of Texas at Austin
Austin, TX

²Electric Power Systems Research
Sandia National Laboratories
Albuquerque, NM

³Operations Research and Industrial Engineering
University of Texas at Austin
Austin, TX

Problem Statement

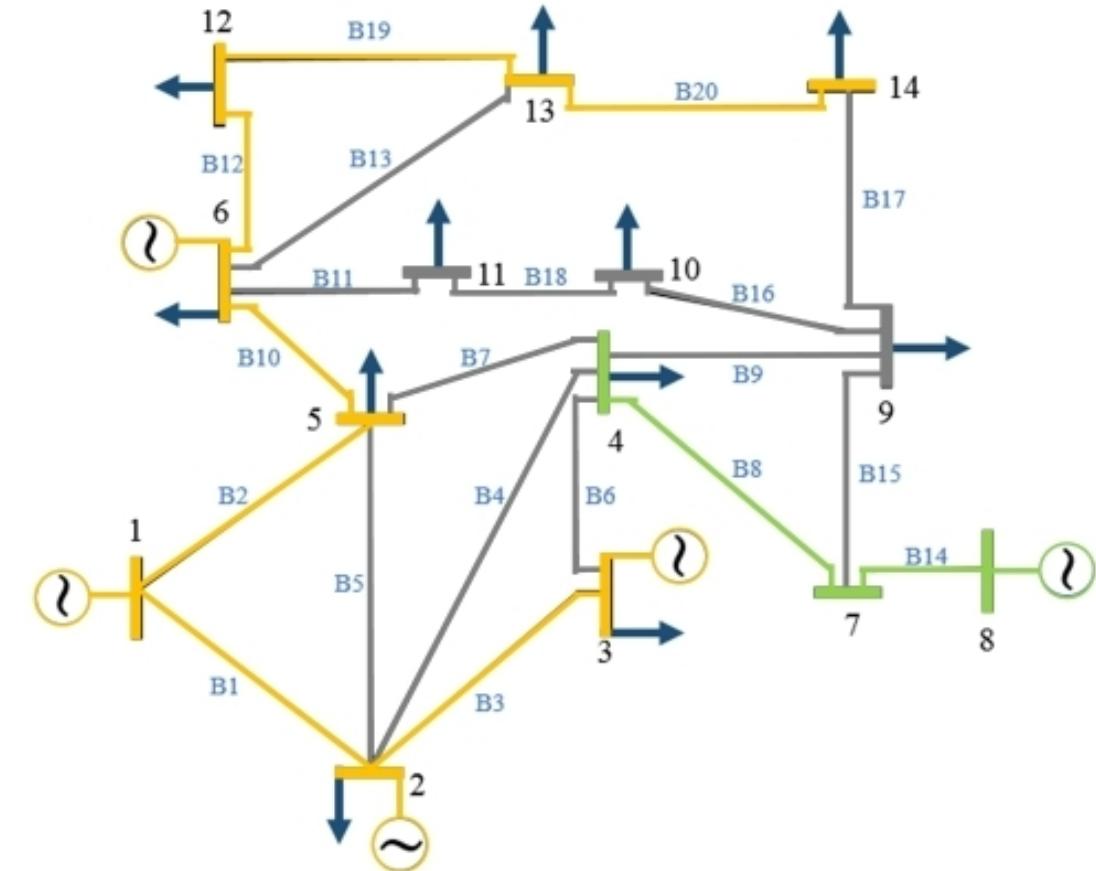
- Following blackout, bringing transmission system back into service requires black-start (BS) restoration
- Utility-scale mobile energy storage (MES) can supply cranking power in order to “black-start” generators
- Topic: optimal pre-blackout placement of MES to enhance BS restoration in view of islands isolated by component damage

Source: U.S. Department of Energy

Source: Batteries and Energy Storage Technology Magazine

Description of Optimization Model

- Binary-valued uncertain parameters for outage of **branches**, generators, and buses
- Two-stage stochastic mixed-integer linear program (MILP):
 - First stage: pre-placement of mobile energy storage (MES) at buses
 - Second stage: steady-state DC power flow without further MES relocation
- McCormick relaxation obviates need for integer variables in second stage



Stochastic Programming Concepts

- Standard form of two-stage linear stochastic program:

$$z^* = \min \mathbf{c}^T \mathbf{x} + \mathbb{E}[Z(\mathbf{x}, \xi)] \\ \text{s.t. } \mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^{N_1}$$

- Second-stage problem (with affine dependence on ξ):

$$Z(\mathbf{x}, \xi) = \min \mathbf{q}(\xi)^T \mathbf{y} \\ \text{s.t. } \mathbf{y} \in \mathbb{R}_{+}^{N_2} \\ \mathbf{T}(\xi)\mathbf{x} + \mathbf{W}(\xi)\mathbf{y} = \mathbf{h}(\xi)$$

- Sample average approximation (SAA):

$$\min_{\mathbf{x} \in \mathcal{X}} \mathbf{c}^T \mathbf{x} + \frac{1}{N} \sum_{n=1}^N Z(\mathbf{x}, \xi^n)$$

- Wait-and-see problem:

$$WS = \mathbb{E}[\min_{\mathbf{x} \in \mathcal{X}} \mathbf{c}^T \mathbf{x} + Z(\mathbf{x}, \xi)]$$

Note that $WS \leq z^*$

- Expected value problem:

$$EV = \min_{\mathbf{x} \in \mathcal{X}} \mathbf{c}^T \mathbf{x} + Z(\mathbf{x}, \mu)$$

Note that $EV \leq z^*$ if \mathbf{q}, \mathbf{W} constant in ξ
 Moreover, $EV \leq WS$ if \mathcal{X} continuous and \mathbf{T} also constant in ξ

- Expected cost of expected value solution:

$$EEV = \mathbf{c}^T \mathbf{x}_{EV} + \mathbb{E}[Z(\mathbf{x}_{EV}, \xi)]$$

Discretized Expected Value

- Wait-and-see problem:

$$WS = \mathbb{E}[\min_{x \in \mathcal{X}} \mathbf{c}^T x + Z(x, \xi)]$$

Note that $WS \leq z^*$

- Expected value problem:

$$EV = \min_{x \in \mathcal{X}} \mathbf{c}^T x + Z(x, \mu)$$

Note that $EV \leq z^*$ if \mathbf{q}, \mathbf{W} constant in ξ
 Moreover, $EV \leq WS$ if \mathcal{X} continuous and \mathbf{T} also constant in ξ

- Expected cost of expected value solution:

$$EEV = \mathbf{c}^T x_{EV} + \mathbb{E}[Z(x_{EV}, \xi)]$$

- Conditions for discretized expected value concept:
 - All second-stage variables \mathbf{y} continuous,
 - Parameter vector \mathbf{q} and matrices \mathbf{T}, \mathbf{W} constant in ξ ,
 - Random parameter vector ξ with nonnegative, integer-valued (e.g., binary-valued) support Ξ , where nonzero component values represent adverse conditions (e.g., damages)
- MILP search problem for finding ξ_{DEV} :

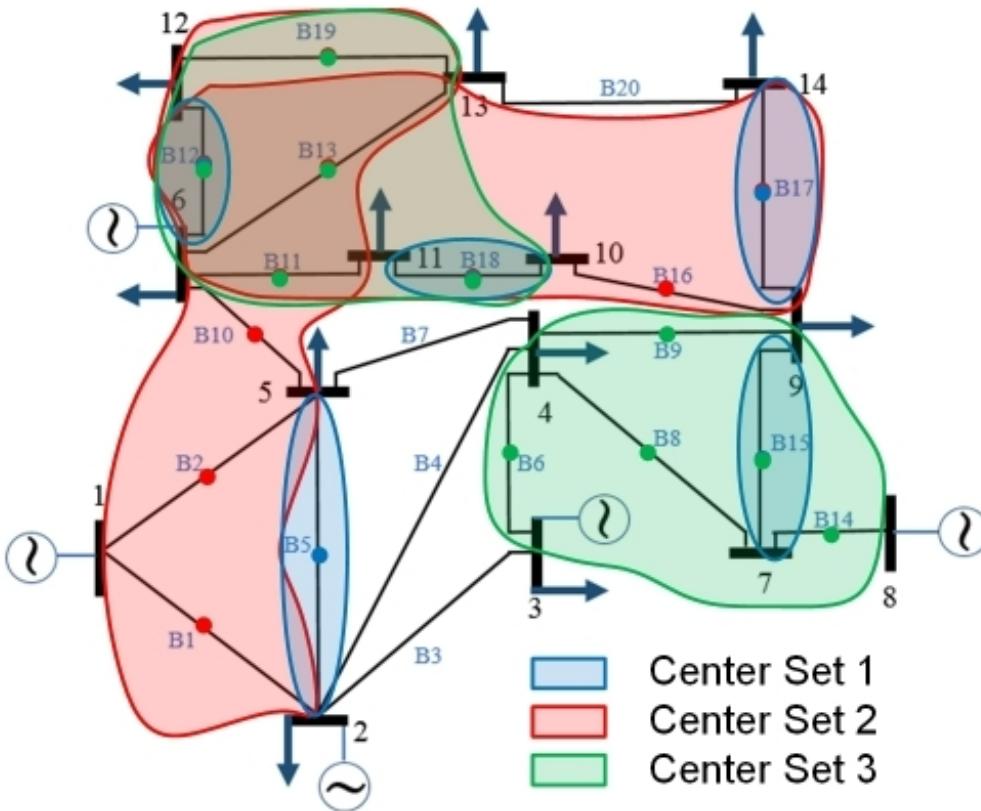
$$\begin{aligned} & \min \|\xi - \mu\|_1 \\ \text{s.t. } & \mathbf{x} \in \mathcal{X}, \mathbf{y} \in \mathbb{R}_+^{N_2}, \xi \in \Xi \subseteq \mathbb{Z}_+^K \\ & \mathbf{c}^T \mathbf{x} + \mathbf{q}^T \mathbf{y} \leq WS \\ & \mathbf{1}^T \xi \geq \mathbf{1}^T \mu \\ & \mathbf{T} \mathbf{x} + \mathbf{W} \mathbf{y} = \mathbf{h}(\xi) \end{aligned}$$

- Discretized expected value problem:

$$DEV = \min_{x \in \mathcal{X}} \mathbf{c}^T x + Z(x, \xi_{DEV})$$

Note that $DEV \leq WS \leq z^*$, and ξ_{DEV} contains at least as many damages as in realization on average

Branch Outage Distributions

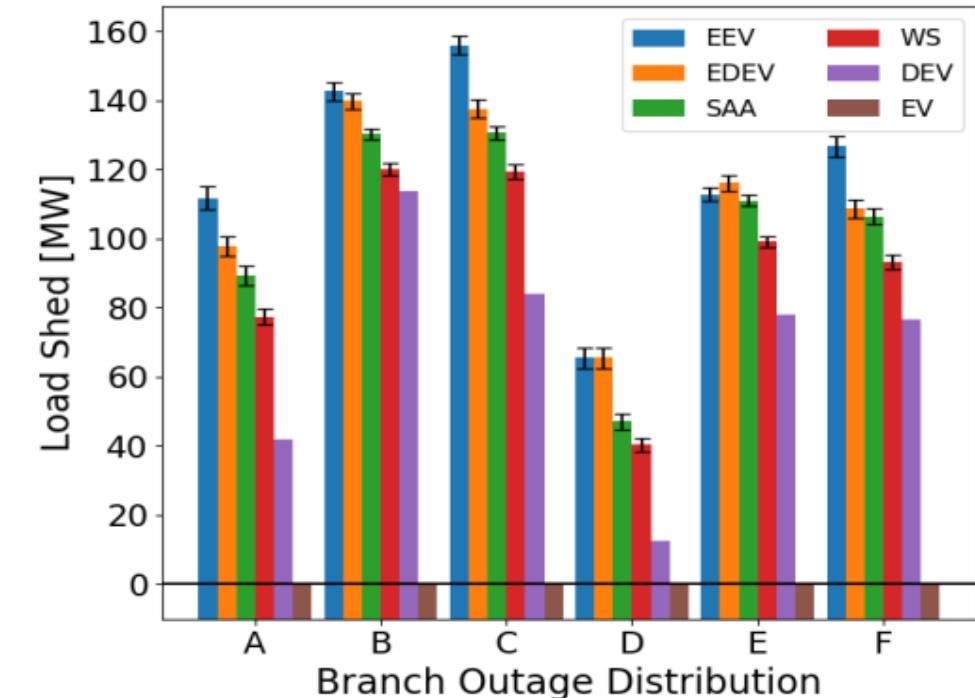


- Branch outage distributions each defined by:
 - Set of centers for outages
 - Outage conditional probability decay rate γ

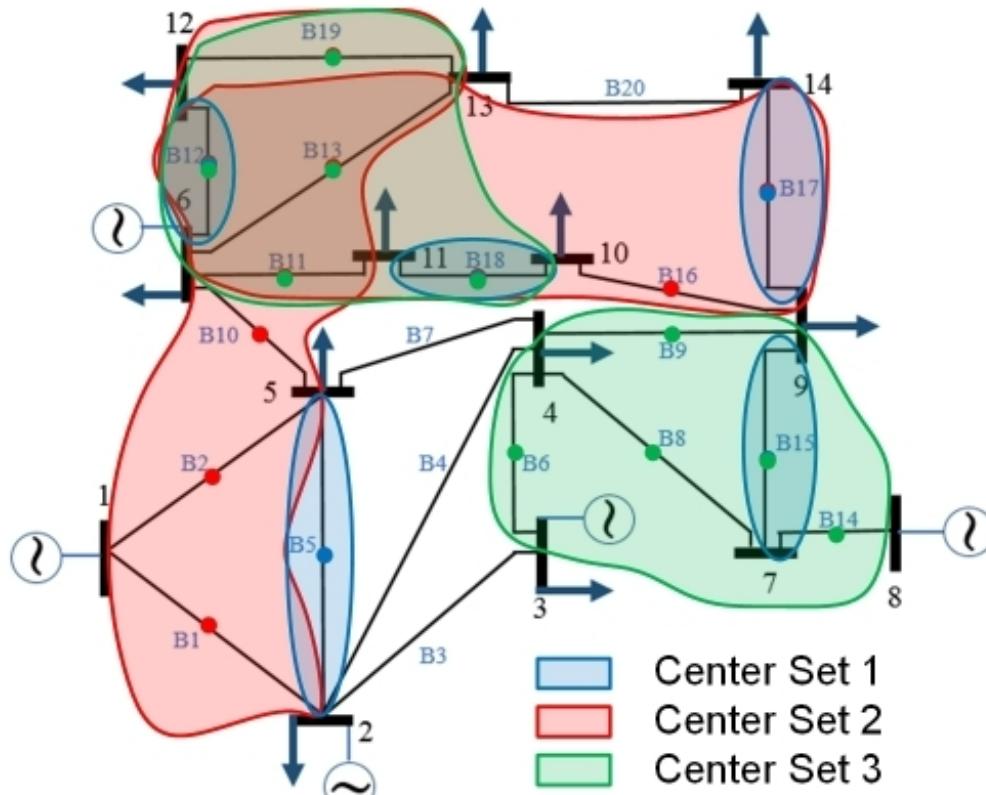
- 1) From distribution's set of centers, randomly select one center to occur
- 2) Given selected center, consider all branches in center disabled, and then for each branch not in center:
 - a) Consider $\gamma^{(\delta/\Delta)}$ conditional probability that non-center branch disabled, where δ gives distance on one-line diagram of branch's midpoint to nearest midpoint of any branch in selected center
 - b) With conditional probability from a), randomly decide whether branch disabled

Outline of Experiments

- Procedure:
 - Training and validation samples, each 2000 scenarios
 - Solve SAA for training sample, then assess first-stage decisions with validation sample
 - Solve approximation of wait-and-see problem with validation sample
 - Solve expected value problem, then assess x_{EV}
 - Solve search problem for ξ_{DEV} , then solve discretized expected value problem, then assess x_{DEV}
- Quantitative results:
 - Inequalities held empirically (e.g., $z^* \geq WS$)
 - Generally observed that $DEV > EV$ and that $EDEV < EEV$

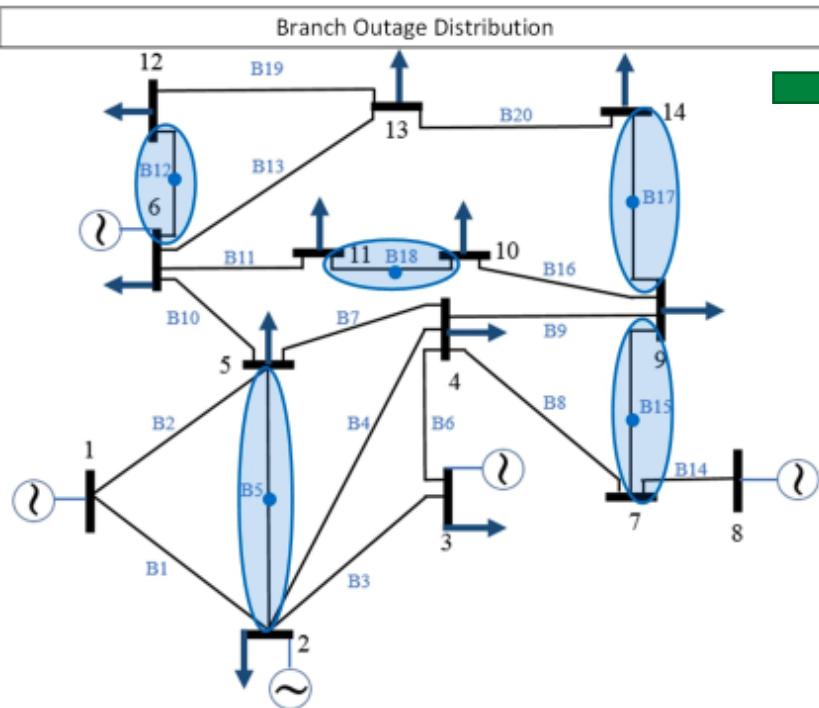


Qualitative Results Summary



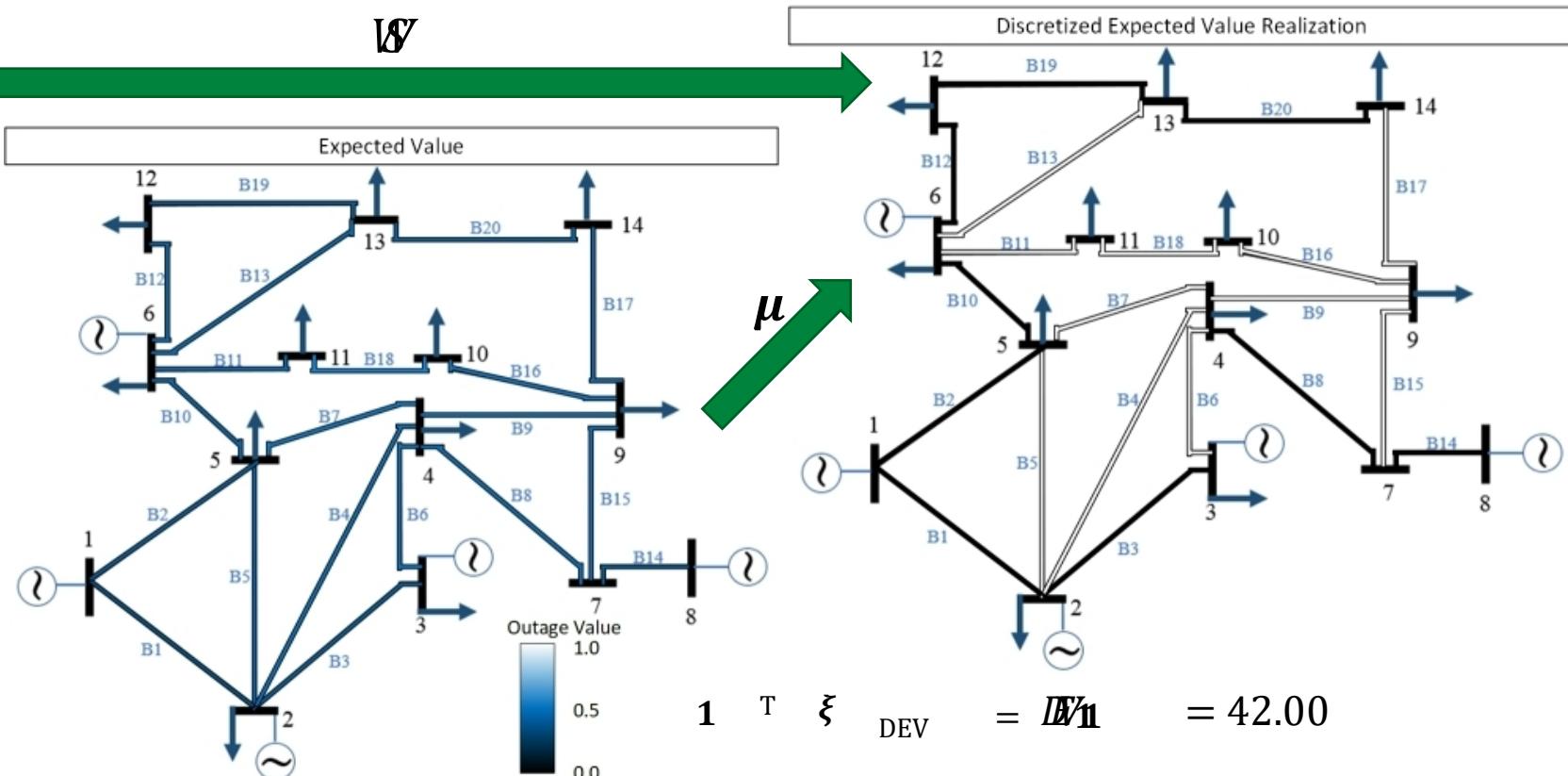
Branch Outage Distr.	MES Bus			Discretized Expected Value		
	SAA	EV	DEV	Dist.	Excess Dist.	Disabled Branches
A	6	None	8	9.25	0.04	4,5,6,7,9,11,13,15,16,17,18
B	3	6	8	5.49	0.05	1,2,4,5,6,7,8,9,10,11,12,13,16,17,18,19,20
C	3	None	6	6.63	0.48	2,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
D	6	None	None	8.84	1.29	6,7,8,11,15,16,17,18
E	3	8	6	5.91	0.00	1,2,5,7,9,10,11,12,13,16,17,18,19
F	3	None	6	7.28	0.19	6,7,8,9,10,11,12,13,14,15,16,18,19

Distribution A: Center Set 1, $\gamma = 1/3$

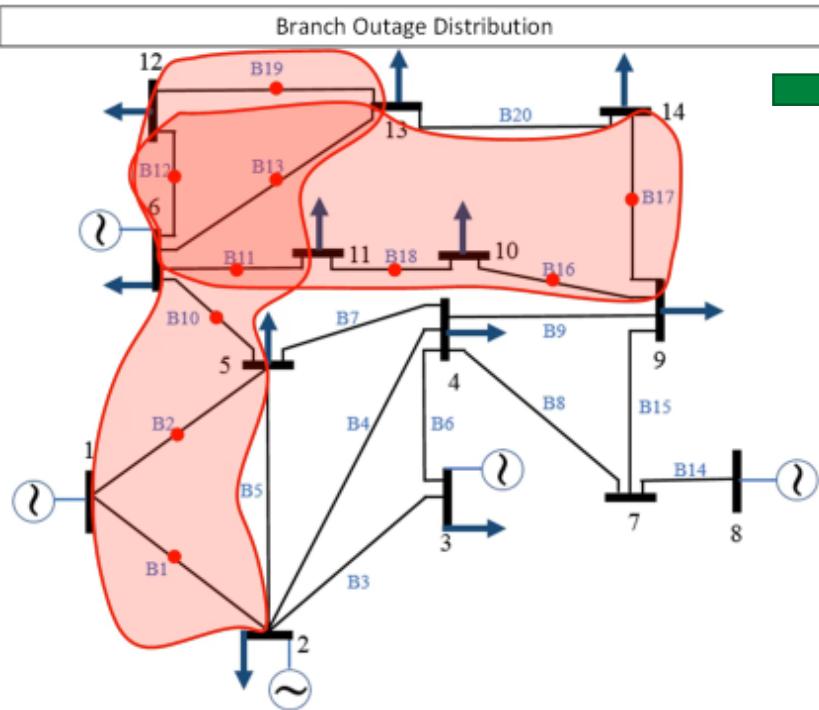


95% CI for WS: [74.96, 79.80]

$$\mathbf{1}^T \boldsymbol{\mu} = 9.90 \text{ WS} = 0.00$$

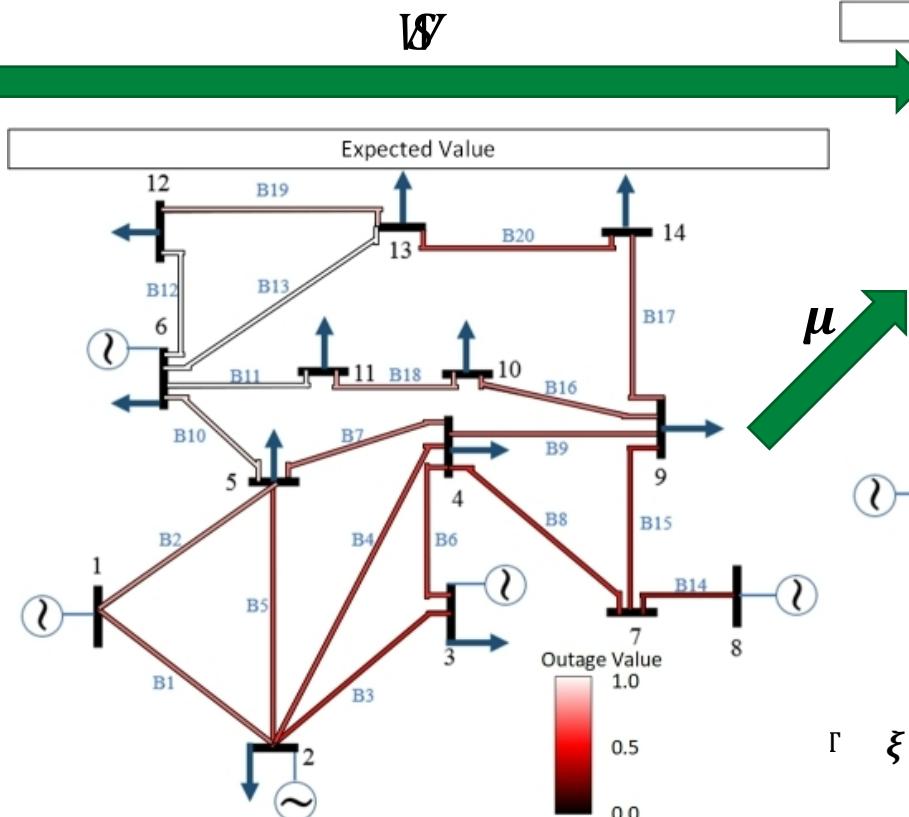
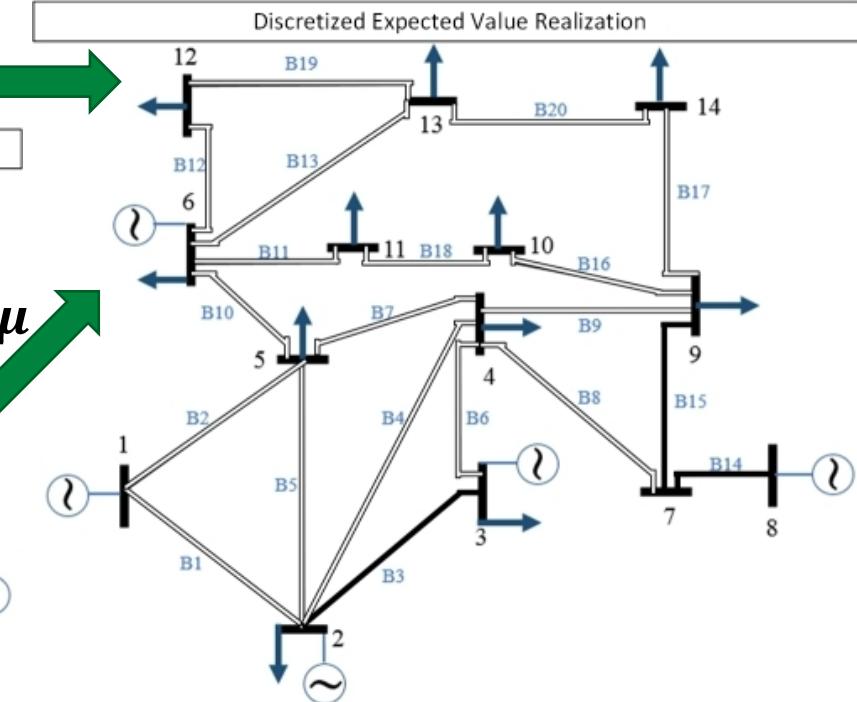


Distribution B: Center Set 2, $\gamma = 1/3$



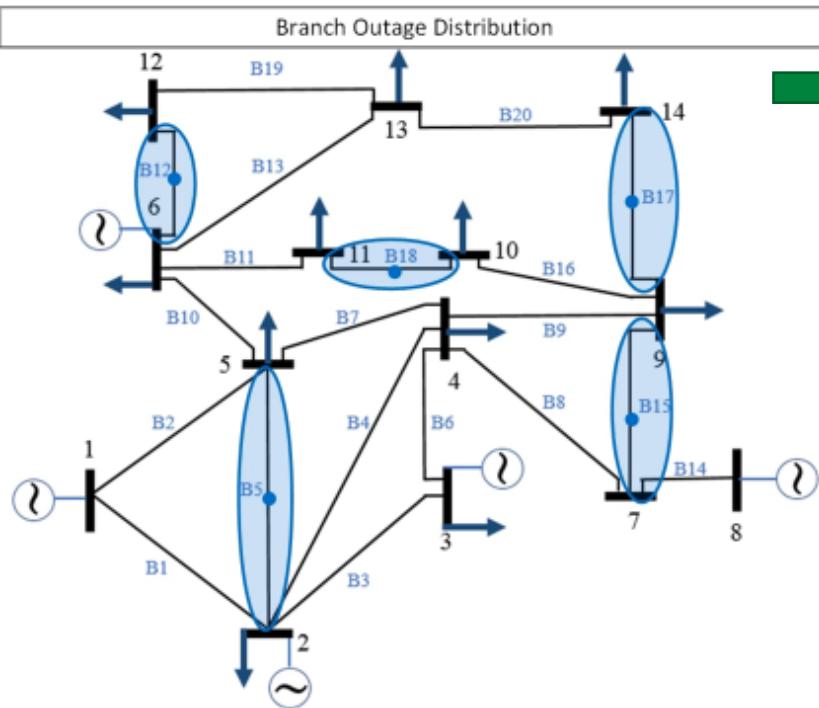
95% CI for WS: [118.37, 121.96]

$$1^T \mu = 1126.67 = 0.00$$



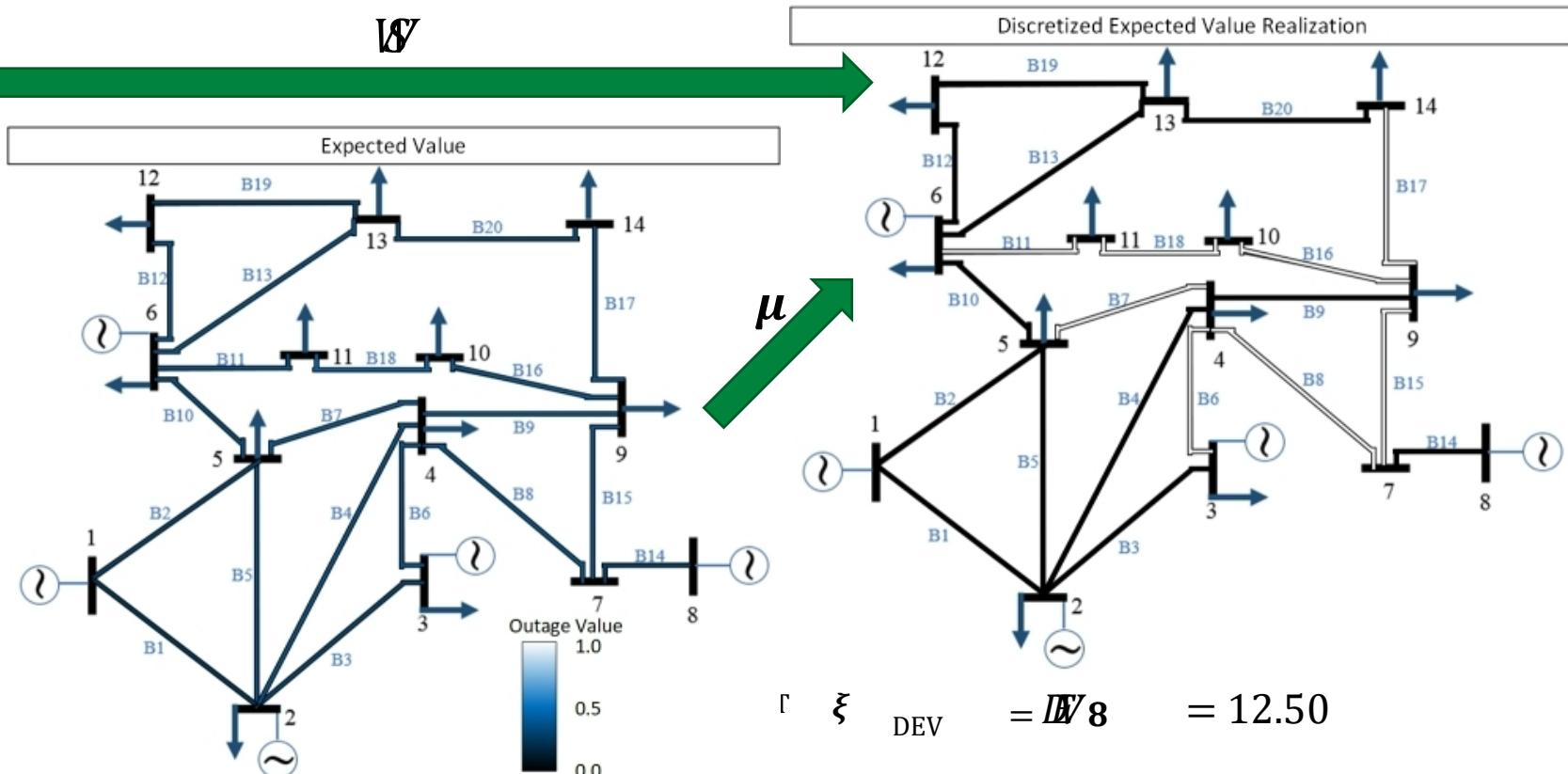
$$\Gamma \xi_{DEV} = 113.60$$

Distribution D: Center Set 1, $\gamma = 1/5$



95% CI for WS: [38.45, 42.28]

$$1^T \mu = 7 \text{ MVA} = 0.00$$



Conclusion

- Developed stochastic MILP for pre-blackout placement of MES to assist BS restoration
- Observed that expected value problem may not work well for integer-valued uncertain parameters
- Devised concept of discretized expected value realization, which may lead to more effective first-stage decisions

Source: POWER Magazine

Thank you!

joshua.yip@utexas.edu