
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National

Technology and Engineering Solutions of Sandia
LLC, a wholly owned subsidiary of Honeywell
International Inc. for the U.S. Department of

Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

Tpetra in FY23

Chr i s S i e fe r t , Tpet ra /Per fo r mance Team Lead

SAND2022-14675CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Tpetra in FY22

Removal of UVM requirement
▪ UVM-free Tpetra stack now tested in PR testing.

Removal of deprecated code in 13.4
▪ Over 27k lines removed by the Tpetra team.

New platform support
▪ AMD/HIP (not PR tested).

▪ Intel/SYCL (not regularly tested).

FOOTER

Asynchronous Import/Export

• Motivation
• Import/Export transfer data from one distributed object (Tpetra::DistObject) to another
• Let’s say you have many MultiVectors to do import on …

• What if you want to overlap communication?
• Launch sends for multiple DistObjects simultaneously

• Launch sends and do some other computation while you wait

• Synchronous API
• Do the complete import, don’t return until it’s finished: DistObject::doImport

• New asynchronous API
• Pack data and kick off sends: DistObject::beginImport

• (Optionally) check if data has arrived and is ready to unpack: DistObject::transferArrived

• Unpack and combine data: DistObject::endImport

• Backend improvements mean each DistObject handles communication separately
• BUT, can still share the same communication plan from the importer (expensive to create)

3

Lead developer: Timothy Smith

Prototype: On-node graph assembly
• For on-node matrix assembly, we’ve had an interface for quite some time…

• Grab the Kokkos::SparseCrsMatrix and work on that directly.

• But how do you assembly a Graph on-node?
• For many apps, host-assembly suffices --- the connectivity never changes.
• But some apps have Graphs that change over time.

• Brian Kelley has been working on a FEM-centric prototype for graph
assembly:

• Still in development in FY23.

4

RCP<CrsGraph> Tpetra::assembleFEGraph(
RCP<Map> rowMap,

View<GO**, Node::memory_space> ownedElements,
View<GO**, Node::memory_space> ghostElements);

Lead developer: Brian Kelley

Improved BlockCrsMatrix Support
• Tpetra::BlockCrsMatrix was designed to support fixed-sized, small,

blocks, e.g., 5x5.

• Uses a CrsGraph on nodes (groups of dofs) for the blocked problem ---
less pointer chasing than CrsGraph for each individual dof.

• New features
• Transpose operation.

• Sparse matrix-matrix multiplication.

• Enables blocks-through-the-whole-hierarchy in certain MueLu code-
paths.

5

Lead developer: Conrad Clevenger

Faces you might see at our meetings

FOOTER

Tpetra FY23: Performance Testing

Emphasis on performance testing over code development

• Already have regular app tests (Sierra/TF, EMPIRE).

• Platforms: CTS1, ATS2, VAN1, ORNL/Crusher.

• Reviewed by humans every Tuesday.

• Jonathan will discuss this more on developer day.

Goal: Add performance testing for more apps (Xyce,SD,???).

FOOTER

Tpetra FY23: Code Cleanup

Reducing memory high-water in the boundary exchange (as
identified by Sierra/SD).

Time permitting: Refactor the SpGEMM code and push some
code to KokkosKernels.

FOOTER

Tpetra FY23: Comp/Comm Overlap in GPU

FOOTER
Lead developer: Carl Pearson

CPU

MPI Stream

High-priority Stream

Local

SpMV

Remote

SpMV

Low-priority Stream

overlap

Pack / Unpack
MPI
SpMV

Default Stream
Matrix Config Speedup.

Fault_639 Vortex, 1n 4r 1.16x

Bump_2311 Vortex, 2n 8r 0.9x

SM Vortex, 8n 32r 1.59x

• Preliminary implementation and evaluation

• Expected to be opt-in behind a behavior (not always beneficial)

• Other common operations may benefit from similar changes

Questions?

FOOTER

