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Tpetra in FY22

Removal of UVM requirement
▪ UVM-free Tpetra stack now tested in PR testing.

Removal of deprecated code in 13.4
▪ Over 27k lines removed by the Tpetra team.

New platform support
▪ AMD/HIP (not PR tested).

▪ Intel/SYCL (not regularly tested).
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Asynchronous Import/Export

• Motivation
• Import/Export transfer data from one distributed object (Tpetra::DistObject) to another
• Let’s say you have many MultiVectors to do import on …

• What if you want to overlap communication?
• Launch sends for multiple DistObjects simultaneously

• Launch sends and do some other computation while you wait

• Synchronous API 
• Do the complete import, don’t return until it’s finished:  DistObject::doImport

• New asynchronous API
• Pack data and kick off sends:  DistObject::beginImport

• (Optionally) check if data has arrived and is ready to unpack:  DistObject::transferArrived

• Unpack and combine data:  DistObject::endImport

• Backend improvements mean each DistObject handles communication separately
• BUT, can still share the same communication plan from the importer (expensive to create)
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Prototype: On-node graph assembly
• For on-node matrix assembly, we’ve had an interface for quite some time…

• Grab the Kokkos::SparseCrsMatrix and work on that directly.

• But how do you assembly a Graph on-node?
• For many apps, host-assembly suffices --- the connectivity never changes.
• But some apps have Graphs that change over time.

• Brian Kelley has been working on a FEM-centric prototype for graph 
assembly:

• Still in development in FY23.
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RCP<CrsGraph> Tpetra::assembleFEGraph(
RCP<Map> rowMap,

View<GO**, Node::memory_space> ownedElements,
View<GO**, Node::memory_space> ghostElements);

Lead developer: Brian Kelley



Improved BlockCrsMatrix Support
• Tpetra::BlockCrsMatrix was designed to support fixed-sized, small, 

blocks, e.g., 5x5.

• Uses a CrsGraph on nodes (groups of dofs) for the blocked problem ---
less pointer chasing than CrsGraph for each individual dof.

• New features
• Transpose operation.

• Sparse matrix-matrix multiplication.

• Enables blocks-through-the-whole-hierarchy in certain MueLu code-
paths.

5

Lead developer: Conrad Clevenger



Faces you might see at our meetings
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Tpetra FY23: Performance Testing

Emphasis on performance testing over code development

• Already have regular app tests (Sierra/TF, EMPIRE).

• Platforms: CTS1, ATS2, VAN1, ORNL/Crusher.

• Reviewed by humans every Tuesday.

• Jonathan will discuss this more on developer day.

Goal: Add performance testing for more apps (Xyce,SD,???).
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Tpetra FY23: Code Cleanup

Reducing memory high-water in the boundary exchange (as 
identified by Sierra/SD).

Time permitting: Refactor the SpGEMM code and push some 
code to KokkosKernels.
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Tpetra FY23: Comp/Comm Overlap in GPU

FOOTER
Lead developer: Carl Pearson
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Fault_639 Vortex, 1n 4r 1.16x

Bump_2311 Vortex, 2n 8r 0.9x

SM Vortex, 8n 32r 1.59x

• Preliminary implementation and evaluation

• Expected to be opt-in behind a behavior (not always beneficial)

• Other common operations may benefit from similar changes



Questions?
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