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Dragonflies�are�highly�specialized�hunters,�and�
experimental�data�suggests�they�approximate�parallel�
navigation,�a�geometric�rule,�for�interception�(6,�10,�11).�
We�are�interested�in�how�the�dragonfly�nervous�system�
calculates�turns�during�hunting.

Effective�interception�requires�coordinate�transformation�
computations,�from�the�eye’s�reference�frame�to�the�body’s�
reference�frame.�We�propose�a�model�neural�network�that�
integrates�both�visual�and�proprioceptive�(head�angular�
position)�inputs�to�calculate�motor�commands�for�
interception.�This�model�multiplicatively�combines�visual�
and�proprioceptive�inputs�(inspired�by�gain�fields�
observed�in�primate�parietal�area�7a�(1,�2,�3,�4)).�We�
compare�the�results�of�this�model�to�electrophysiology�
data�recorded�from�awake�dragonflies�to�validate�this�

��������������������model�and�to�gain�
��������������������understanding�of�the�
��������������������biological�mechanisms�
��������������������for�performing�these�
��������������������computations.�The
��������������������validated�model�will�be
��������������������used�to�inform�new�
��������������������neuromorphic�
��������������������architectures.

�

Neuromorphic�systems�take�inspiration�from�biological�
neural�networks�to�offer�novel�low-power�computing�
techniques.�The�dragonfly�nervous�system�is�relatively�
small,�allowing�characterization�of�key�features�of�neural�
circuits�for�specific�behaviors.�The�neural�system�
underlying�dragonfly�interception�is�highly�efficient�and�
accurate,�making�it�a�potential�source�of�inspiration�for�
new�neuromorphic�computing�approaches.�

State-of-the-art�digital�neuromorphic�systems�such�as�
Intel’s�Loihi�chip�(7)�rely�upon�reduced�and�compact�
neuron�models�such�as�the�leaky-integrate-and-fire�(LIF)�
neuron.��Identifying�where�and�how�dragonflies�perform�
coordinate�transformations�will�highlight�fundamental�
neural�mechanisms,�potentially�at�the�single-neuron�level,�
that�we�will�leverage�for�developing�novel�neuromorphic�
neuron�models.��We�are�in�the�process�of�implementing�a�
version�of�an�earlier�dragonfly�model�neural�network�(5)�
that�will�incorporate
more�biologically-
complex�neuron�models�
on�the�Georgia�Tech�(GT)
Field-Programmable
Analog�Array�(FPAA)
System-On-Chip�(SoC)�
(8,�13).
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Target-selective�descending�neurons�(TSDNs)�receive�visual�information�describing�prey�
location�and�direction�and�send�output�to�the�motor�ganglia�(9).�We�hypothesized�that�TSDNs�are�
the�location�where�visual�and�proprioceptive�inputs�are�combined�for�coordinate�
transformations.��To�test�this�hypothesis,�we�measured�TSDN�activity�in�awake�dragonflies�when�
shown�visual�stimuli�for�different�head�positions.

Our�results�demonstrate�that�TSDN�activation�is�not�affected�by�head�position�(see�figure�below).�
This�data�does�not�rule�out�the�possibility�that�head�position�only�modulates�visual�responses�
when�the�dragonfly�is�actively�turning�its�head.�Experiments�to�measure�impact�of�head�position�
on�motor�neuron�activity�are�in�progress.

We�propose�a�neural�network�model�of�coordinate�transformations�in�the�
dragonfly�sensorimotor�pathway.�This�model�relies�upon�a�multiplicative�
interaction�between�visual�and�proprioceptive�input�to�calculate�required�
motor�commands.��

Experiments�to�identify�the�location�of�this�coordinate�transformation�are�in�
progress.��Identifying�the�coordinate�transformation�site�will�allow�deeper�
examination�of�the�mechanisms�underlying�multiplicative�interactions�between�
multimodal�inputs.�Our�findings�will�be�used�to�inspire�novel�neuromorphic�
computing�architectures.
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Left: We�presented�3�sets�of�visual�stimuli�(moving�dots�with�randomized�trajectories�and�start�positions)�and�recorded�activity�from�individual�TSDNs.�The�
head�was�then�pitched�ventrally�and�TSDN�activities�were�recorded�for�3�more�sets.�The�head�position�was�then�returned�to�neutral�and�TSDN�activity�was�
recorded�for�5�additional�stimulus�sets.
Center: Example�TSDN�responses�for�one�set�of�visual�stimuli.�Each�dot�is�the�location�of�the�visual�stimulus�at�the�time�of�one�action�potential�(colors�
indicate�the�direction�the�stimulus�was�moving).
Right:�Box�plots�are�the�number�of�spikes�divided�by�receptive�field�area�for�several�neurons�and�trials,�for�neural�(N)�or�ventrally-pitched�(P)�head�positions
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