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Introduction Model Neural Network

Dragonflies are highly specialized hunters, and ‘o, x: visual input (coordinates  Visual (prey-image location on eye) and proprioceptive
experimental data suggests they approximate parallel on eye) (head angle) neurons encode prey-image location on eye and
navigation, a geometric rule, for interception (6, 10, 11). head angle, respectively.
We are interested in how the dragonfly nervous system —|a; — x|? ‘ V;,/,\{-,-;-;,,
calculates turns during hunting. y: head angle filx) = EXP( 202 ); S
Effective interception requires coordinate transformation g:(y) = exp (_”’j — €& tan(y)|2) ’ ii,;
computations, from the eye’s reference frame to the body’s . Zng Q} 7
reference frame. We propose a model neural network that fi(x) and g;(y) are the response curves for the ith visual and jth ’ ‘ ‘Z‘Z’%V
integrates both visual and proprioceptive (head angular proprioceptive neurons, with tuning widths o, and o,. a; and b; are / iz
position) inputs to calculate motor commands for preferred prey-image location and head angle. ¢ is the distance of the eye ’ . _ r: motor neuron
- : : ST - - f(x):visual . sensorimotor
interception. This model multiplicatively combines visual from the center of the head. neuron
and proprioceptive inputs (inspired by gain fields Sensorimotor neurons multiplicatively combine visual and (y): proprioceptive neuron Sample Trajectory
observed in primate parietal area 7a (1, 2, 3, 4)). We Activation of a Single Sensorimotor Neuron proprioceptive inputs (inspired by gain fields observed in 'gm); I‘L;)ll‘: P P 1 A v Prey ~oDragonfly
compare the results of this model to electrophysiology ' | Neutral Neck primate parietal area 7a (1, 2, 3, 4)): ogl 8 S I I _
ta quded rom aw raonﬂle;gcc)levlazl:r(listteot;isn 08| E— sij = Ji(x)g;(¥) The dragor}ﬂy'_s body turn d is decoded from motor output
understanding of the ] Motor output neurons sum inputs from sensorimotor neuron activations r-. S o o
biological mechanisms § | neurons: . d = tan-12k "k _k -
for perfor-ming these g o4l T = % Wijisiy , with Wiy = exp (2—((:2:.;;2::2) )) | | LTk
computations. The rTig T m The head turn Ay is proportional to —d.
validated model will be ozl where c{c is the preferred turn direction of motor neuron k with tuning
used to inform new curve width oy The simulation continues iteratively until the dragonfly is 02
neuromorphic 0 - Synaptic weights are pre-calculated (see (12) and (14) for  within distance to catch the prey in one timestep (criteria for |
architectures. Prey Position biological motivation). capture) or maximum simulation time is exceeded. X

Neuromorphic Computing Eletrophysiological Experiments Conclusion

M OtIV atl ons B 0 Targ(.at-selectiv.e de§cending neurons (TSDNs) receive Visugl information descr.ibing prey We propose a ne.ural network model. of Coordina.te transformat19n§ in.the
7 Y location and direction and send output to the motor ganglia (9). We hypothesized that TSDNs aredragonfly sensorimotor pathway. This model relies upon a multiplicative

Neuromorphic systems take inspiration from biological the location where visual and proprioceptive inputs are combined for coordinate interaction between visual and proprioceptive input to calculate required

neural networks to offer novel low-power computing transformations. To test this hypothesis, we measured TSDN activity in awake dragonflies when motor commands.

techniques. The dragonfly nervous system is relatively

shown visual stimuli for different head positions.
small, allowing characterization of key features of neural
circuits for specific behaviors. The neural system

Experiments to identify the location of this coordinate transformation are in
Our results demonstrate that TSDN activation is not affected by head position (see figure below).progress. Identifying the coordinate transformation site will allow deeper
underlying dragonfly interception is highly efficient and This data does not rule out the possibility that head position only modulates visual responses = examination of the mechanisms underlying multiplicative interactions between
accurate, making it a potential source of inspiration for when the dragonfly is actively turning its head. Experiments to measure impact of head position multimodal inputs. Our findings will be used to inspire novel neuromorphic

new neuromorphic computing approaches. A | | e &~ on motor neuron activity are in progress. Number of Spikes per Area of Receptive Field computing architectures.

e

State-of-the-art digital neuromorphic systems such as Example TSDN Responses %0 %0 %0 Refe rences
Experimental Design | |
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