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/ Motivation

Accurate modeling of interfacial fracture is a critical aspect of modeling component
behavior, reliability, and lifetime [1]

+ Interfacial fracture introduces additional complexity compared to traditional LEFM (e.g., strong
dependence of toughness on crack-tip mode mixity) [2]
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« However, most analyses assume the bonded materials remain linearly elastic

«  What if this assumption fails and one or more of the materials exhibit inelastic behavior (e.g.,
viscoelastic behavior)?

For example, EPON 828/DEA has a T, of ~70°C, will exhibit time- and temperature-dependent responses
above and below the T, [1]

How can the energy loss in the system be partitioned into bulk dissipation and interface
separation?

Goal: Evaluate whether the combination of bulk viscoelasticity and cohesive zone
models can accurately predict experimentally observed trends in interfacial fracture tests

[1] Reedy & Stavig. (2020). Int. J. Fracture, 222(1).

[2] Hutchinson & Suo. (1991). Adv. Appl. Mech., 29. ‘




P Experimental Method: ADCB Test
P .
I, adhesive

Asymmetric double cantilever beam (ADCB)
test used to measure the toughness of an
epoxy-aluminum interface

«  Asymmetry introduces slight mode-mix (=
— 12°) that constrains the crack along the top
interface [1]

«  Sufficiently small to approximate Mode |
toughness [3]

- ADCB subjected to end loads via displacement
control, calculate specimen compliance and
critical load [3]

« Determine the interface toughness using
crack length inferred from the compliance [3]

«  Multiple measurements obtained from each
specimen by repeatedly loading/unloading [3]

1] Reedy & Stavig. (2020). Int. J. Fracture, 222(1).

[
[3] Stavig, Jaramillo, Larkin, Dugger, & Reedy. (2019). SAND-2019-14935.
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Experimental Method: ADCB Test
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P Previous Work [1]

Experiments conducted using
ADCB method

Toughness of epoxy/aluminun
interface increases as
temperature decreases

I (J/m?)

Linear relationship observed
between toughness and
product of yield stress and
surface roughness

[ (J/m?)

Proposed mechanism:
Toughness related to energy
required to yield material in a
surface pit to the hardening
strain

[1] Reedy & Stavig. (2020). Int. J. Fracture, 222(1).
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P Measured Toughness Results

ADCB tests conducted on epoxy/aluminum interfaces at 3 loading rates and 5 test
temperatures

« Toughness minimized at room temperature, increases with loading rate
Results indicate a transition from surface-dominated to bulk-dominated regimes
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P Modeling Approach

Meshing performed using Cubit, FE solution calculated using Sierra/Solid Mechanics

« Mesh highly refined around the crack tip to resolve the cohesive zone, transitions to a
coarser mesh in the bulk aluminum and epoxy

+ Elastic model assumed for aluminum, nonlinear viscoelastic model assumed for epoxy [4-6],
mode-dependent G, cohesive zone model [7] assumed for epoxy/aluminum interface

« Procedure: Generate mesh for single crack length, anneal and cool epoxy, heat to test
temperature, and apply end displacement at constant velocity until failure of the first

(crack-tip) cohesive surface element Region along interface meshed with
cohesive surface elements

L Mesh of ADCB Finite Element Model

Adolf, Chambers, & Caruthers. (2004). Polymer, 45(13). Local Mesh Refinement around Crack-Tip

Adolf, Chambers, & Neidigk (2009). Polymer, 50(17).
Cundiff, Long, Kropka, Carroll, & Groves. (2021). SAND-2021-11193.
Reedy & Emery. (2014). Int. J. Solids Struct., 51(21-22).
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Initial Model Predictions
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P/ Model Corrections

—a--55°C

-a-—-35°C

» Next, introduce temperature/rate =
dependence of the toughness and yield & 25°C
strength as follows: e

1. Calculate the epoxy yield stress as a = 750

function of temperature and strain rate
using 1-element viscoelastic simulations

2. Set peak stress as a function of
calculated yield stress

3. Calculate the interface toughness as a
function of yield stress using Reedy-
Stavig relation for EPON 828/DEA[1]

o Assumed R, =0.01 mm

4. Prescribe calculated peak stress and
interface toughness a priori for each test
temperature of interest : . S e ,

10 10 10 10

Applied Strain Rate, ¢ (%/s)

Yield Stress, oy (MPa)

+ Effect of loading rate on yield strength
and toughness not yet incorporated Yield Strength of Epoxy Element Subject to Uniaxial Tension

[1] Reedy & Stavig. (2020). Int. J. Fracture, 222(1).



P Updated Model Predictions

Interface-dominated regime
successfully captured, but the bulk-
dominated regime is not fully resolved

Some increase in effective toughness
observed at higher temperatures

Selection of peak stress results in
different model behavior

« Setting peak stress << yield stress
results in interface failure with minimal
dissipation

« Setting peak stress >> yield stress
results in epoxy softening and flow
without failure of the interface

Epoxy constitutive model does not
include post-yield hardening, loses
ellipticity after yielding

140 A

130 A

X0
e < + X

120 -

o<+ X

110 -

o+

100 A

90 A

Effective toughness (J/m?)

X+

80 -

70 A

60 -

0.002 mm/s
0.02 mm/s
0.2 mm/s
Intrinsic

K+

25 30 35 40 45 50 55
Temperature (°C)

Initial Model Predictions of Toughness Trends
(Peak Stress Set to Twice the Epoxy Yield Stress)

60 65

i ] .
| |

11 H
Severe Distortion of Epoxy Elements at
Crack-Tip
(65 C and 0.002 mm/s, from Initial Model)




Conclusions and Future Work S 180
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« Observed toughness of epoxy/aluminum
interface is minimized at room temperature,
Increases with loading rate 0l a— =
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+  Model captured interface-dominated trends o (MPa) 20 tomperatue, Te0)
observed in experiments (i.e., toughening at low 1401 SEPS—
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dominated trends (i.e., tougheningat high . intrinsic
temperatures)

Future Work

« Incorporate post-yield hardening or regularize
softening in epoxy

80

DEEEDHO

[0}
o
A0 ©

Xe

o<+ X

110+

o4

100 +

90 A

Effective toughness (J/m?)

X +

80 -+
 Include sub-critical crack growth and R-curve
behavior

70 - *

X+

60

 Directly tie cohesive element parameters to epoxy ——————————————
. 25 30 35 40 45 50 55 60 65
State |n the mOdEI Temperature (°C)

[1] Reedy & Stavig. (2020). Int. J. Fracture, 222(1).
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Supplementary: Mesh Convergence without Viscoelasticity
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Supplementary: Mesh Convergence with Viscoelasticity
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/" Supplementary: 1-Element Epoxy Study Convergence
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