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Basics of fusion energy:.

Controlled Fusion Research— An Application of i 7/
the Physics of High Temperature Plasmas Ix10”

Ricaarp F. Post

University of California Radiation Laboralory, Livermore, California

TaABLE 1. Fusion reactions.
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(1) D+D—He* +n+ 3.25 Mev
(2) D+D-T +p+ 4 Mev
(3) T+D—He* +#n+17.6 Mev
(4) He3+-D—He* +p+18.3 Mev
(5) Li%4+D—2 He*+ 224 Mev
(6) Li'™4p—2He'+ 17.3 Mev

DT tusion - 10 MeV per reaction
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F1G. 1. Nuclear fusion reaction cross sections as a
function of relative particle energy.

with a large cross section at 10 keV*



Key idea

Temperature

Density

Pressure

Two approaches to fusion.

Most material containers have a tendency to melt around 1 eV...

We need something to keep a fusion plasma confined

Magnetic Inertial

Charged particles don’t cross B field lines Matter stays put for a time ~(size/sound speed)
10 keV, e.g., a star 10 keV, e.g., a star
1014 parts. /cm3, e.g., 100,000x sparser than air 1025 parts./cm3, e.g., 100x denser than water

106 Pa, e.g., 10x the room you're in 1012 Pa, e.g., 10x the Earth’s inner core

Inertial confinement fusion (ICF) requires us to
control matter in conditions that we don’t commonly encounter

Reminder, O(1 eV) = O(10,000 K)
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ICF research platforms.
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Challenges of multiphysics modeling.

What physics needs to be modeled?
Current in walls drives implosion via Lorentz force

Laser coupling to fuel and window

Magnetic inhibition of transport

Alpha particle self-heating,
balance against radiation and conduction loss

X-rays generated in plasma propagate

Maénetization Laser heating Compression thrgugh Surrounding matter

There is vast multidisciplinary expertise in capturing all of this
in a large system of coupled partial differential equations (PDEs).

My expertise is in developing high-fidelity models of the coefficients of those PDEs.

This seems to be the place where quantum computers might help ICF, soonest.



Materials 1n extreme conditions.

Fusion happens here
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How mzight a quantum computer help?

Recall various effects that

Siopping pove

must be modeled
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Comedic insight: Stephanie Hansen
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Setting the scale of the modeling problem.

10.0 -

Lead scientist: The figure on the left took about
Alina Kononov 0.25 billton CPU hours.
~@=1ecV =@=total

106V =A= free Results like these are benchmarks for more
=@=20eV B core

efficient models that can fill out an entire model
w/7-8 orders of magnitude fewer resources.

‘A ._‘_ N Experiments are actually more expensive than
.“u=23l """" T the huge CPU time investment.
omms , ,
1 2 3 4 5 Calculations use Ehrenfest dynamics &

proton velocity (at. u.)

time-dependent density functional theory.
Proton stopping powers for

warm dense aluminum. First principles, but unknown™ approximation error.



How would a quantum algorithm work?

Surprisingly simple, if you’re content to elide details.

1.) Prepare a state that encodes the system of interest in a register of qubits.

2.) Time evolve said state under the action of the exact many-body Hamiltonian.
3.) Measure observable of interest, e.g., an operator or a 2-point response function.

The above example computes an energy eigenvalue...
It is only a bit more complicated to compute observables with a different eigenbasis.



(Rough) resource estimates.
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Appearing on arXiv, tonight
Shivesh Pathak



Tracking progress towards a useful™ QC.

Those are daunting resource estimates - how do we know that we're getting closer?
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We can turn a subroutine from any algorithm into a volumetric benchmark.
Coming to an arXiv, near you...



Conclusions.

Quantum computers aren’t going to uniquely enable fusion energy production,
but they might help solve very specific niche problems along the way.

In general, this will likely be true of science applications and quantum computing.
Classical computers help us do science, and they don’t replace experiments.

Value added by scientific computation = (Cost of experiment) - (Cost of computer)

As in fusion, the energy balance is currently negative.
But I hope that it won't always be that way:.
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