
High-Performance GMRES Multi-Precision
Benchmark: Design, Performance, and Challenges

Ichitaro Yamazaki∗, Christian Glusa∗, Jennifer Loe∗, Piotr Luszczek†,
Sivasankaran Rajamanickam∗, and Jack Dongarra†

∗Sandia National Laboratories, Albuquerque, New Mexico, USA
†University of Tennessee, Knoxville, Tennessee, USA

Abstract—
We propose a new benchmark for high-performance (HP)

computers. Similar to High Performance Conjugate Gradient
(HPCG), the new benchmark is designed to rank computers
based on how fast they can solve a sparse linear system of
equations, exhibiting computational and communication require-
ments typical in many scientific applications. The main novelty
of the new benchmark is that it is now based on Generalized
Minimum Residual method (GMRES) (combined with Geomet-
ric Multi-Grid preconditioner and Gauss-Seidel smoother) and
provides the flexibility to utilize lower precision arithmetic.
This is motivated by new hardware architectures that deliver
lower-precision arithmetic at higher performance. There are
other machines that do not follow this trend. However, using
a lower-precision arithmetic reduces the required amount of
data transfer, which alone could improve solver performance.
Considering these trends, an HP benchmark that allows the use
of different precisions for solving important scientific problems
will be valuable for many different disciplines, and we also hope
to promote the design of future HP computers that can utilize
mixed-precision arithmetic for achieving high application perfor-
mance. We present our initial design of the new benchmark, its
reference implementation, and the performance of the reference
mixed (double and single) precision Geometric Multi-Grid solvers
on current top-ranked architectures. We also discuss challenges
of designing such a benchmark, along with our preliminary
numerical results using 16-bit numerical values (half and bfloat
precisions) for solving a sparse linear system of equations.

I. INTRODUCTION

Table I lists current top-ranked HP computers, some emerg-
ing architectures, and the early-access platforms for the US
Exascale Computing Project (ECP). These platforms represent
current hardware trends: though typical scientific applications
require double precision accuracy, some emerging hardware
for HP scientific applications can deliver lower-precision arith-
metic at higher performance. There are other machines that
do not follow this trend and provide the same performance
for double and single precision arithmetic. However, even
in that case, using a lower-precision arithmetic reduces the
required amount of data transfer. Since the performance of
scientific applications on the HP computer is often limited
by the communication bandwidth, if not by communication
latency, reducing the required communication volume alone
could reduce the simulation time. Moreover, many emerging
architectures can perform the arithmetic operations in a pre-
cision lower than single (e.g. in half precision), which can
deliver significantly higher performance and further reduce

the communication volume. Considering these trends, there
is a growing interest in utilizing lower-precision arithmetic
capabilities for scientific applications.

In response to these growing interests, there are several
efforts to investigate multi-precision algorithms on emerging
computers [5]. This includes the xSDK multi-precision project
funded by the ECP [1]. Since a significant portion of scientific
simulation time may be spent solving sparse linear systems
of equations, xSDK’s effort includes development of multi-
precision algorithms for solving such linear systems, numer-
ical and performance studies of the resulting multi-precision
solvers, and deployment of resulting mixed-precision software.

In this paper, we propose a new benchmark that can harness
emerging hardware trends, as well as algorithmic and software
efforts to utilize lower precision for solving important scien-
tific or engineering problems. Specifically, the new benchmark
ranks the computers based on how fast they can solve a
sparse linear system of equations (exhibiting computational
and communication requirements typical in many scientific
applications), while providing the flexibility to utilize lower
precision arithmetic. Considering the current hardware and
software trends, an HP benchmark that allows the use of
different precisions for solving important scientific problems
will be valuable for many different disciplines.

II. RELATED WORK

There are three popular benchmarks for HP computers,
which are closely related to the one proposed in this paper.
The first, and oldest, is the High Performance Linpack (HPL)
benchmark [15] that measures the performance (floating point
operations per second, or flop/s in short) of computers solving
a dense linear system of equations in double precision. It is
based on a dense LU factorization. With a proper implemen-
tation, HPL performance is dominated by the dense matrix-
matrix multiply (GEMM). This kernel exhibits uniform mem-
ory access with enough data reuses and parallelism to fully
utilize the compute power of current HP computers. As a
result, HPL can obtain close to the peak computational perfor-
mance of the target computer. It is used to rank HP computers
for the Top500 list [4] and provides historical data since its
release. On the other hand, the compute and communication
patterns demonstrated by HPL may not be typical in many
of the current scientific or engineering applications, especially

SAND2022-13948CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Benchmark ranking (Pflop/s) GPU Peak Performance (TFlop/s)
HPL, HPCG, HPL-AI rank (Pflop/s) GPU FP64 FP32 FP16

Frontier (ORNL) 1 (1,102), N/A, 1 (6,861) AMD MI250X 26.5 26.5 191
Fugaku (RIKEN) 2 (442.0), 1 (16.0), 2 (2,000) Fujitsu A64 FX 3.4 6.7 13.5
Summit (ORNL) 4 (148.6), 2 (2.9), 3 (1,411) NVIDIA V100 7.5 19.5 N/A

Perlmutter (NERSC) 7 (70.8), 4 (1.9), 5 (590) NVIDIA A100 9.7 19.5 312
Spock (ORNL) N/A AMD MI100 11.5 23.1 184

Crusher (ORNL) N/A AMD MI250X 26.5 26.5 191

TABLE I: Current top-ranked HP computers (June 2022), and emerging architectures [4], [2].

those applications that aim to utilize the full HP computers on
the Top500 list.

When simulating physical systems on a parallel computer,
a significant portion of the simulation time may be spent
solving large sparse linear systems of equations arising from
the discretization of partial differential equations (PDEs). In
many applications, an iterative method is used for solving
these linear systems. This led to the development of High
Performance Conjugate Gradient (HPCG) benchmark [14] that
tests the HP computer’s ability to solve a sparse symmetric
positive definite (SPD) linear system. The benchmark uses
an iterative Krylov solver, Conjugate Gradient (CG) [19],
combined with Geometric Multi-Grid (GMG) preconditioning
and a symmetric variant of a Gauss-Seidel (GS) smoother.
This is a popular solver configuration used in many sci-
entific applications, but more importantly, unlike compute-
bound HPL, the resulting sparse solver exhibits computation
and data access patterns that are more commonly found in
scientific applications. In particular, HPCG exhibits a more
irregular memory access pattern, less parallelism, and a lower
ratio of computation to communication. As a result, HPCG
performance is often limited by communication latency or
bandwidth (see the HPL and HPCG performance gaps in
Table I). Its benchmark performance is meant to represent typ-
ical application performance. It is designed to rank computers
based on how fast they can solve an important problem that
appears in the applications targeting top HP computers and to
promote the design of future HP computers that achieve high
application performance.

Recently, a newer benchmark called High Performance
Linpack for Accelerator Introspection (HPL-AI) [2] was re-
leased. Like HPL, the benchmark measures performance of a
dense linear system solve, but here it uses a mixed-precision
algorithm. Specifically, the compute-intensive LU factoriza-
tion, which is typically the most time-consuming part of the
benchmark, is computed in a lower precision, while iterative
refinement is performed to obtain double precision accuracy of
the computed solution. Computers that deliver lower-precision
arithmetic at higher performance often obtain much higher
HPL-AI performance than HPL performance (see Table I).

HPL-AI addresses the current hardware trends. However,
it only tests the machine’s ability to handle compute-intensive
tasks. We are missing a benchmark to test the machine’s ability
to exploit mixed-precision arithmetic for solving a sparse
linear system with computation and communication patterns
common in scientific applications. Lack of such a benchmark

may lead the hardware and scientific communities to neglect
both recent hardware trends (wasting available higher compute
power at lower precision) and the recent algorithmic and
software efforts to utilize lower-precision algorithms.

The new benchmark aims to fill this gap. Similar to HPL-
AI, the new benchmark is based on mixed-precision iterative
refinement. However, while HPL-AI uses direct LU factoriza-
tion for solving a dense linear system, the new benchmark uses
an iterative Krylov solver, the Generalized Minimum Residual
method (GMRES) [28], to solve a non-symmetric sparse linear
system. The benchmark allows the use of lower precisions for
the GMRES iteration, but to obtain double-precision solution
accuracy, the approximate solution is updated in double preci-
sion. This algorithm dates back to a paper published by Turner
and Walker in 1992 [30], but in recent years it has gained
more attention ([11], [12], [6], [7], [31]), especially with the
recent hardware trends discussed in Section I. We alternatively
considered allowing the use of lower-precision arithmetic in
HPCG (e.g., a preconditioner or SpMV in lower precision),
but GMRES with mixed-precision iterative refinement often
gives more robust solution convergence, especially for ill-
conditioned problems (making the validation easier). In ad-
dition, both solvers rely on similar computational kernels that
are commonly found in scientific applications, but GMRES
has more balanced use of sparse and dense operations. (The
full orthogonalization process of GMRES uses more dense
operations than the three-term recurrence of CG.)

The new benchmark is named High Performance GMRES
with Multi Precision (HPGMP). We stress that it is designed to
measure the computer’s capability to utilize lower precisions
for the computation and communication patterns common in
scientific applications. Thus, we do not aim to develop a scal-
able or robust linear solver. In fact, for a weak-parallel scaling,
similar to HPCG, the number of HPGMP iterations required
for convergence increases with the number of processes.

Table II summarizes these four benchmarks. Considering
the current hardware, algorithmic, and software trends, an
HP benchmark that allows the use of different precisions for
solving a realistic scientific problem will be valuable to many
different disciplines.

Dense Problem Real-World Sparse Problem
(Compute Intensive) (Communication Intensive)

Uniform Precision HPL HPCG
Multiple Precisions HPL-AI HPGMP (new)

TABLE II: HP Benchmarks

z

y

x

(a) 27-point stencil.

(b) Local submatrix with nx = ny = nz = 8, where
diagonal red points, and off-diagonal blue, green, and
orange points have numerical values of 26, −1, −1−β,
and −1 + β, respectively.

Fig. 1: 27-point stencil problem used for the benchmark.

III. PROBLEM DESCRIPTION

As in HPCG, the benchmark problem is on a regular 3D
grid with a 27-point stencil as shown in Figure 1. For HPGMP,
however, we use a parameter β to allow a non-symmetric
numerical value pattern (the diagonal and off-diagonal entries
have the numerical values of 26 and -1, except for the off-
diagonal entries, which correspond to the edges connecting to
the point directory above and below, have the numerical values
of −1 − β and 1 + β, respectively). The matrix corresponds
to a finite difference discretization of an advection-diffusion
problem. We have tested the benchmark with β = 0.0 and
β = 0.5. In this paper, we show results with β = 0.0, which
corresponds to the same SPD problem that HPCG solves.
Compared with β = 0.5, non-preconditioned GMRES for
β = 0.0 needed more iterations to converge and GMG resulted
in a greater reduction in the iteration count.

For the benchmark run, the user specifies the dimension
(nx, ny, nz) of the submatrix local to each MPI process (e.g.,
largest size allowed by the available local memory). The global
matrix is distributed on a 3D process grid (px, py, pz), and
hence, the global matrix dimensions are (nxpx, nypy, nzpz).

The right-hand-side vector is computed such that the entries

Input: input vector y ∈ Rn×1 Output: output vector x
1: x = 0,
2: if not coarse grid then
3: Update x by applying Pre-smoothing to x
4: Compute residual vector r = y −Ax
5: Compute input vector for coarse grid

by applying restriction operator R to r, yc = Rr
6: Call GMG on a coarser grid, GMG(yc, xc)
7: Compute x by applying prolongation P to xc, x = Pxc
8: Update x by applying Post-smoothing to x
9: else

10: Compute x by applying forward GS to r
11: end if

Fig. 2: GMG preconditioner.

of the exact solution vector are all one. The initial approximate
solution vector is a vector of all zeros.

IV. ALGORITHM DESCRIPTION

HPGMP is based on the Generalized Minimum Resid-
ual method (GMRES) [28], an iterative Krylov solver
for solving a nonsymmetric linear system of equations
Ax = b. At its jth iteration, GMRES generates an or-
thonormal basis vector of the Krylov subspace Kj+1 =
span(r0, (AM)r0, (AM)2r0, . . . , (AM)j), where r0 = b −
Ax0 is the initial residual vector given by the initial approxi-
mate solution x0, and M it a preconditioner used to accelerate
GMRES convergence. It then computes the approximate so-
lution that minimizes the residual norm over the generated
projection subspace.

The benchmark consists of the following main components:
• To accelerate GMRES convergence, it uses three levels

of a Geometric Multigrid (GMG) preconditioner with
one forward sweep of Gauss-Seidel (GS) for pre and
postsmoothing on each level. The restriction operator
halves the number of points in each direction of the
3D mesh such that the coarser grid has 8 times fewer
points than the finer grid. One forward sweep of the GS
iteration is used at the final coarse level. Figure 2 shows
the GMG pseudocode. The HPCG benchmark uses the
same GMG preconditioner but with a symmetric Gauss-
Seidel smoother.

• After GMG, we apply a sparse-matrix multiply (SpMV)
on the resulting vector. The generated Krylov basis vector
is then orthogonalized against the previous basis vectors
using the Classical Gram Schmidt process with reorthog-
onalization (CGS2).

• As the iteration proceeds, the cost of storing and comput-
ing the basis vectors becomes expensive. To reduce the
cost, the iteration is restarted after a fixed number of basis
vectors are computed. At the restart, the approximate so-
lution is updated such that the residual norm is minimized
on the Krylov subspace generated. The resulting residual
vector is used as the starting vector for the next cycle.

Figure 3 shows the pseudocode of restarted GMRES, where
the restart length of 30 is used for the benchmark results in
this paper (i.e., m = 30).

Input: A ∈ Rn×n, b ∈ Rn×1, initial guess x0 ∈ Rn×1,
relative residual tolerance rTol
Output: approximate solution xm
1: r = b−Ax,
2: γ = ‖r‖2
3: while not converged do
4: v1 = r0/γ, and h1,1 = 0
5: for j = 1 : m do
6: // GMG preconditioner M , followed by SpMV
7: wj = AMvj
8: // CGS2 orthogonalization
9: wj = wj − Vjtj with tj = V T

j wj

10: h1:j,j = tj
11: wj = wj − Vjtj with tj = V T

j wj

12: h1:j,j = h1:j,j + tj
13: hj+1,j = ‖wj‖2
14: vj+1 = wj/hj+1,j

15: end for
16: d̂ = argminy∈Rm ‖γe1 −H1:m+1,1:my‖2
17: x = x+ Vmd̂
18: r = b−Ax
19: γ = ‖r‖2
20: end while

Fig. 3: GMRES(m) with CGS2 orthogonalization and GMG
preconditioner M . Steps in blue may be performed in lower
precision; the remaining steps are in double precision.

The resulting solver exhibits many of the computational and
communication patters that are typical in applications:

• Sparse matrix vector multiply (SpMV):
– point-to-point communication among the 7 to 26

neighboring processes (1, nx, or n2x elements

to exchange for each SpMV)

– local sparse-matrix vector multiply on 27-point sten-
cil (Total of 54nm Flops / restart cycle)

• Geometric Multigrid (GMG):
– Restriction and prolongation of the vectors on the

fine and coarse grids (no MPI communication,

local SpMV with a rectangular sparse

matrix, restriction operator has one

nonzero entry per row).

– Sparse matrix vector multiply on 27-point stencil
of different size at each level (for computing resid-
ual vector). (Total of (54× 73)/64nm Flops /

restart cycle)

– Local sparse triangular solves on 27-point stencil
of different size at each level (for pre and post
smoothing based on forward GS). (Total of (54×
73)/64nm Flops / restart cycle)

– Sparse triangular solve as the coarse gird solver
(Total 81/512nm Flops / restart cycle)

• Orthogonalization (CGS2):
– BLAS-2 dot-product that requires local atomic

operations and global reduction among all the
processes. (Total of 2n(1 + m)m Flops /

restart cycle)

– BLAS-2 vector update that is embarrassingly par-
allel. (Total of 2n(1 +m)m Flops / restart

cycle)

With m = 30, we perform about the same number of flops
for GMG and CGS2.

The benchmark allows the use of lower precision arithmetic
for the GMRES iterations (Lines 5 through 16 of Figure 3),
while to obtain double-precision solution accuracy, the ap-
proximate solution is updated in double precision (Lines 17
through 19). To maintain stability, the starting vector for the
inner-iteration is also scaled in double precision (Line 4). The
algorithm originated in [30] but several variants of the solver
have been proposed and analyzed (e.g., using LU factorization
in a lower precision as a preconditioner [11], [12], using
a lower precision for orthogonalization [18], using up to
five different precisions with low-rank compression in lower
precision to approximate an LU-based preconditioner [6],
[7]). The potential of such multi-precision solvers to obtain
higher performance than the uniform-precision solver has been
demonstrated in recent papers [24], [25], [31].

In Sections VII and IX, we discuss the potential uses
of lower precision in the new benchmark, along with other
allowed optimizations.

V. REFERENCE GMRES IMPLEMENTATION

The reference implementation of the HPGMP benchmark
is available at [3]. It uses many components from the HPCG
reference implementation (e.g. problem construction, GMG,
SpMV, etc.). These components are used to generate the basis
vectors in parallel, while the least-square problem is solved
by each MPI process, redundantly (Line 16 of Figure 3). One
difference is that HPGMP uses C++ templates to make it
easier to use different scalar types. Figure 4 shows the solver
interfaces for the reference implementation of GMRES.

The reference implementation also contains CUDA and HIP
backends for running with NVIDIA and AMD GPUs, respec-
tively. It uses GPUs for generating the basis vectors, while the
least-square problem is solved on a CPU. It still relies on MPI
for exchanging data between the MPI processes, but all local
operations are performed solely relying on vendor libraries.
Hence, the reference implementation does not contain any
custom CUDA or HIP codes. Specifically, the CUDA backend
relies on the CuBLAS, CuSparse, and CUDA libraries:

• CuBLAS is used to implement CGS2 orthogonalization.
• The GS smoother is implemented using CuSparse’s

SpMV and SpTRSV.
• The prolongation and restriction operators are based on

CuSparse’s SpMV.
• The CUDA library is used for memory management

operations such as Malloc, Memcpy, and Memset.
Similarly, the HIP backend relies on rocBLAS, rocSparse, and
HIP routines, with no custom HIP functions.

Because of the design choice to avoid custom CUDA or
HIP code, we perform the halo-exchange among neighboring
MPI processes for SpMV on the CPU. Hence, each MPI
process first copies all the vector entries local to the process to
the CPU. (Local elements are stored contiguously in memory
before the interface elements, such that the local entries can
be copied to CPU in a single CudaMemcpy call.) Then each

(a) Uniform-precision GMRES.

(b) Mixed-precision GMRES.

Fig. 4: Solver interfaces for reference implementation.

process packs the local elements needed by each neighboring
process and sends them to that process. Similarly, the received
interface elements are copied to the appropriate nonlocal
portion of the vector on the CPU and then copied back to the
GPU. In addition, since neither NVIDIA nor AMD provides
mixed-precision kernels (including copy), our mixed-precision
GMRES copies the vector d̂ to CPU for type-casting, and then
copies back to GPU (Line 17 in Figure 3).

VI. BENCHMARK DESCRIPTION

Our benchmark consists of two steps (Figure 5). The first
step is designed to verify that the optimized version of the
solver, which is provided by the participant and potentially
uses mixed-precision, can solve the linear system to double-
precision accuracy. This verification is done by running the
optimized solver on a fixed-size problem to a specified accu-
racy, using a fixed number of MPI processes. If the solver
converges, the benchmark records the number of iterations
needed for the optimized code to reach the specified solution
accuracy. Otherwise, it is marked as a failure. The reference
implementation of the solver is also run with the same param-
eters, and the number of iterations required for convergence
is recorded. For our experiments, we set nx = ny = nz = 80
and run to a tolerance of ‖b − Ax‖2 < 10−9‖b‖2. We used
four MPI processes for the verification step in order to start
the benchmark from a single node in our experiments (nodes
of Spock and Crusher have only four GPUs). However, for the
finalized benchmark, we may require the user to use a larger
number of MPI processes for this step.

The second step benchmarks the optimized version of the
solver. The benchmark runs the optimized solver multiple
times for a fixed number of iterations (300 iterations × 10
runs) and for a minimum run time (30 minutes). Then it
records the required number of flops and the total solve time.
These values are used to compute the “raw” Gflop/s. The final
Gflop/s value used for ranking (Eqn. 1) is penalized by the
ratio of the reference to optimized iteration counts from Step 1.
(The penalty reflects the fact that, while each mixed-precision

Step 1: Verification
1) Run both optimized and reference solvers using a fixed problem

size on a fixed number of MPI processes to a fixed tolerance.
a) Record the required numbers of iterations for both optimized

and reference solvers, io and ir
b) Compute penality factor ip = min(1.0, ir/io)

Step 2: Benchmark
1) Run optimized solver for a fixed number of iterations using user-

specified problem size and number of MPI processes
2) Repeat until reaching the minimum number of solves or the mini-

mum time in minutes, required by the benchmark
a) Record time and flop count
b) Compute “raw” Gflop/s for optimized run
c) Compute benchmark Gflop/s, ip × “raw” Gflop/s.

Fig. 5: Benchmark steps.

name value
Solver parameters

restart cycle, m 30
GMG levels 3
GS sweeps 1

Step 1 (Validation)
problem size (nx, ny , nz) (80,80,80)
convergence tol 10−9

of MPI procs 4
Step 2 (Benchmark)

of iterations 300
of minimum solves 10
minimum time 30 minutes (disabled)

TABLE III: Parameters.

iteration may be faster, the solver may perform more iterations
than a uniform double precision solver to converge for a real-
life problem.) The reasoning behind this two-step process is
further explained in Section VIII-A.

Final Gflops/s = (1)

min

(
1.0,

reference iteration count
optimized iteration count

)
× “raw” Gflop/s

Required parameter values and those used in our experi-
ments are summarized in Table III. Some of the parameter

values are chosen for convenience (e.g., “# of MPI procs”
in the Verification step, and “# of minimum solves” and
“minimum time” in Benchmark step). We also did not include
the setup time needed for CUDA and HIP backends when
computing the Gflop/s; this value will be included in the real
benchmark runs but will be amortized over the multiple solves.

Our reference implementation is coupled with the bench-
mark suite and is available at [3].

VII. ALLOWED OPTIMIZATIONS

Benchmark optimizations are allowed as follows:
• Hardware-specific optimizations are allowed (e.g. special-

ized data structures or communication schemes).
• The matrix may be permuted/reordered for the GS

smoother to exploit more parallelism. If the matrix per-
mutation leads to an increase in the iteration count for
the Verification phase of the benchmark, the benchmark
performance will be penalized in the Benchmark phase.

• Any precision may be used for the inner GMRES it-
eration. Again, if the iteration count increases using
lower precision, then the benchmark performance will be
penalized in the second phase.

• Matrix scaling is not allowed. It may be possible to scale
the vectors and/or matrices so that their numerical values
fit within the numerical range of a lower precision [21].
However, matrix scaling may also be used as a precon-
ditioner to improve convergence and, thus, is prohibited.

• Algorithmic changes are not allowed. These include
s-step/communication-avoiding [22], pipelined [17], or
randomized [8] variants of GMRES. Also prohibited are
single-reduce or other variants of CGS orthogonaliza-
tion [10] and iterative variants of Gauss Seidel [29], [9].

• It is prohibited to use knowledge of the structure or
spectral properties of the problem (i.e. the matrix should
be treated as a general matrix and both the numerical
values and indices of the non-zero entries should be
explicitly loaded for SpMV).

VIII. NUMERICAL AND PERFORMANCE RESULTS WITH
REFERENCE IMPLEMENTATION

The best-known variation of the mixed-precision GMRES
algorithm uses single (fp32) precision for the inner GMRES
iterations (blue lines in Figure 3). We now show the parallel
weak-scaling results of this mixed-precision variation of the
reference benchmark implementation.

A. Numerical Convergence Studies

The following solver convergence results was performed on
the (CPU-only) Skybridge cluster at Sandia National Labs.
Each node has two 8-core 2.6 GHz Intel Sandy Bridge CPUs.
Recall that, per the linear problem setup, the size of the 3D grid
local to each MPI process is fixed. We set nx = ny = nz = 40
and test both the uniform (all fp64) and mixed (fp32-fp64)
precision solvers using up to 4096 MPI processes. Figure 6
shows the convergence of the benchmark solvers. The bottom
plot in the figure uses the required GMG preconditioner. For

(a) Without preconditioner.

(b) With GMG preconditioner.

Fig. 6: Comparison of convergence histories using uniform and
mixed (double and single) precision (nx = 40) on SkyBridge
Supercomputer at Sandia National Labs.

comparison, the top plot shows convergence for the solver with
no preconditioning. We make the following two points:

1) Even with the GMG preconditioner, the solver is not
weak-scalable; the iteration count increases significantly with
increases in the number of MPI processes. This poses a
challenge in validating and benchmarking the optimized code
since it indicates that enforcing double-precision accuracy of
the solution on a large number of MPI ranks requires too many
iterations to be practical. This demonstrates the reason that the
Benchmark step (Step 2) runs the solver to a fixed number of
iterations rather than to a particular tolerance.

2) The figure demonstrates another difference in iteration
counts between the solvers: Without preconditioning, the
problem needs many more iterations to converge, but the
convergence curves of the uniform and mixed precision solvers
match, and both solvers use (essentially) the same number
of iterations. This behavior has been observed in [18], [24],
[25], [31]. On the other hand, with GMG preconditioning
(applied lower precision), the mixed-precision solver could
require a different number of iterations to converge than the
uniform-precision preconditioned solver, especially on a large
number of MPI processes. (The figure shows that the mixed-

Fig. 7: Benchmark performance results on Summit (6 NVIDIA
V100 GPUs or 42 IBM Power9 CPU cores per node) using
CUDA 10.1.168. Speedups are mixed-precision over uniform-
precision.

precision solver could require either more or fewer iterations
to converge. Use of mixed-precision arithmetic in multi-grid
has been analyzed in [26].) Since the Verification is run on a
smaller number of processes, it may not capture the increase in
the iteration count using low precision on the larger number
of processes used for the Benchmark step. Moreover, if the
difference in the required numbers of uniform and mixed
precision iterations increases with a larger number of MPI
processes, then we may not want to capture the difference
and penalize the participant, who is running the benchmark
on a larger number of processes, with a larger factor.

We stress that the new benchmark is designed to measure the
computer’s capability to perform computation and communi-
cation typical for HPC applications, while providing the flexi-
bility to use various precisions; it is not meant to be a scalable
solver for the selected linear system (defined in Section III).
For this purpose, we feel that the Verification step (Step 1)
provides sufficient information about the optimized solver’s
performance in achieving the required solution accuracy: It
captures and penalizes the benchmark results if the iteration
count increases with use of lower precisions in the validation
phase. This reflects the reality that the mixed-precision solver
may need to perform more floating-point operations than a
uniform precision solver for a real-life problem.

B. Parallel Weak-Scaling Performance Results

Next we benchmark the solver performance on top-ranked
HP computer architectures at Oak Ridge Leadership Comput-
ing Facility: Summit supercomputer with NVIDIA GPUs, and
Spock and Crusher with AMD GPUs. (See Table I for the GPU
peak performance.) We enabled OpenMP for both CPU and
GPU builds, and ran the benchmark with the default number
of threads. The codes were compiled using the optimization
flag -O3.

When solver performance is bound by the bandwidth needed
to move matrix values, indices, and vector values, the max-
imum speedup which can be obtained using single precision

(a) Spock (4 AMD MI100 GPUs or 64 AMD EPYC 7662 CPU cores
per node) using ROCm 4.5.0.

(b) Crusher (8 AMD MI250X GPUs or 63 AMD EPYC 7AA53 CPU
cores per node) using ROCm 4.5.0.

Fig. 8: Benchmark performance results on AMD GPUs.
Speedups are mixed-precision over uniform-precision.

arithmetic is about 1.6× (maximum speedup of about 2.5× for
local SpMVs was reported in [25] due to a reduction in local
cache misses on the GPU). Figures 7 and 8 show performance
of the mixed-precision reference implementation compared
to the uniform-precision implementation as computed by the
Benchmark step (see Section VI). These results demonstrate
that it is possible to obtain speedups of up to 1.2× with
our reference implementation, even without any optimizations.
We note that even though the AMD MI250X GPU provides
the same peak performance for double and single precision
computations, mixed-precision GMRES still obtains speedups
(because the amount of data to be moved was reduced by half).

In the figures, “raw” and “benchmark” Gflop/s are essen-
tially the same because with the parameters used for the
experiments (in Table III), the uniform and mixed precision
GMRES converged very similarly for our validation phase
(using just four processes).

Table IV shows the breakdown of solve times and the
performance obtained by individual algorithm components
on NVIDIA V100 GPUs (all of these data are part of the
Benchmark output). We ran GMRES to a relative residual
norm tolerance of 10−12. The performance of the reference

Fig. 9: Comparison of Benchmark performance on Summit (6
NVIDIA V100 GPUs) using CUDA 10.1.168. and Kokkos-
Kernels 3.6.1. Speedups indicate mixed-precision Kokkos-
Kernels over uniform-precision Kokkos-Kernels (orange) and
over uniform-precision CuSparse (black).

implementation is dominated by SpTRSV within GMG. Com-
pared to other kernels, SpTRSV has less parallelism to be
exploited on a GPU, and its performance may be more limited
by latency. As a result, GMG obtained the lowest performance
and the smallest speedup among the main components.

To see if an optimized implementation can obtain higher
speedup, Figure 9 shows benchmark results on the Summit
supercomputer, where we replaced the reference GS smoother
implementation (based on CuSparse) with the implementation
in Kokkos-Kernels [13], [27]. We see higher speedups can be
obtained using more optimized codes.

IX. DISCUSSIONS

Before we conclude, we discuss some potential extensions
and challenges of the benchmark.

A. Potential of 16-bit Precisions
Though our reference implementation is templated with

only two precisions (one for the solution vector and the
other for the “inner” GMRES iteration), our goal is to allow
arbitrary precision for any subset of the inner GMRES iteration
operations, while capturing any increase in the iteration count
with the validation phase. Here we examine the potential of
using 16-bit precisions, either half (fp16) or bfloat (bf16) on
a single NVIDIA A100 GPU (NERSC Perlmutter supercom-
puter). Table V shows the machine epsilons and representative
numerical ranges for precisions used in the experiments.

Figure 10 shows initial numerical results using GMRES
without preconditioning to solve a standard Laplacian on a 3D
7-point stencil (nx = 50). Our experiments use Kokkos and
Kokkos-Kernels [16], [27] for the underlying linear algebra.
Though we only show performance on an NVIDIA GPU,
Kokkos enables thread-parallel performance that is portable
to different manycore architectures using a single code base.

Figure 10a shows the convergence history of uniform-
precision GMRES in different precisions. For orthogonaliza-
tion, we used Kokkos-Kernels GEMV, but we implemented our

(a) Convergence history of uniform-precision GMRES. (‘hGMRES’
computes and stores dot products in higher precision.)

(b) Convergence history of mixed-precision GMRES (with iterative
refinement).

Fig. 10: Experimental results using 16-bit half precision and
bfloat precision on an NVIDIA A100 GPU. The problem is a
standard 3D Laplacian with no preconditioning.

own mixed-precision dot product for computing vector norms.
Both single and bfloat precisions provide a wide enough range
of representative numerical values for stable GMRES conver-
gence (even though GMRES stagnates at a higher residual
norm than in double precision, due to the larger machine
epsilon). On the other hand, half precision’s numerical range is
much smaller, and GMRES encounters numerical breakdown
after a few iterations. In our experiments, numerical issues
typically arose when computing dot products in GMRES.

For more insight, Figure 11 shows the numerical errors from
computing a dot-product of a unit-norm vector in different
precisions. We test two implementations: i) a serial code
where each vector element is multiplied and accumulated in
sequence and ii) a hierarchical parallel code. Numerical errors
of the serial implementation follow the expected upper bound
of O(nε). The parallel implementation has much smaller
numerical errors, with magnitude almost independent of the
vector length. This is partially expected as the error depends on
the block size used for the parallel implementation rather than
on the full vector length [20, Section 3.1]. This suggests that
while parallel dot-products using half or bfloat precision within

Time (s) Gflop/s
Setup Opt GMG SpMV Ortho Total GMG SpMV Orth Total

uniform 51.5 3.8 2.5 60.2 298.6 1195.7 4130.3 504.7
mixed 3.9 5.0 44.5 2.4 1.8 50.1 345.6 1867.1 5729.5 605.6
speedup 1.16 1.56 1.39 1.20 1.15 1.56 1.39 1.20

TABLE IV: Breakdown of iteration time with 48 GPUs on 8 Summit nodes.

fp64 fp32 fp16 bf16
maximum 1.80 · 10308 3.40 · 1038 6.55 · 104 3.39 · 1038
minimum 2.22 · 10−308 1.17 · 10−38 5.96 · 10−8 1.18 · 10−38

epsilon 2.22 · 10−16 1.19 · 10−7 9.77 · 10−4 7.81 · 10−3

TABLE V: Numerical precisions used in the experiments.

(a) Serial implementation.

(b) Parallel implementation.

Fig. 11: Numerical errors from dot-products of a unit-norm
vector with numerical value of each entry set to be 1/n1/2.
The solid lines show nε.

GMRES have larger round-off errors than those with higher
precisions, their round-off errors are not amplified by the vec-
tor length. We note that the Kokkos-Kernels implementation
of dot-product (used in the GMRES runs for Figure 10) had
similar numerical errors to our own parallel implementation,
even though for half or bfloat precision, Kokkos-Kernels
accumulates the dot-product in single precision before type-
casting to the output scalar type.

When computing the dot-product of the basis vectors in
GMRES, their resulting numerical values are upper-bounded

by ‖AM−1‖2‖vj‖2, where the norm of the matrix A is within
the numerical range of the precision (e.g., ‖A‖1 = 56), and
vj is normalized to have unit-norm. However, the numerical
overflow of dot-products is still possible, especially in half
precision (e.g., when the residual norm becomes small, the
normalization of the residual vector at restart could cause
significant round-off errors, and the norm of the resulting start-
ing vector vj may significantly deviate from one). Numerical
issues may also arise when the dot-product is rounded to zero,
causing “lucky” breakdown [28] before the solution converges.
This numerical issue still arose even when using the Kokkos-
Kernels implementation of dot-product in half precision, which
casts the numerical values to single precision for computing
the dot-product. Since the final value is cast back down to half
precision, the solver still fails if the computed single-precision
result is outside the half precision numerical range limit.

We found that this numerical issue may be avoided if we
use a higher precision for computing dot-products and for
storing the final computed value (including the residual norm
at restart). In Figure 10a, our implementation of this “hybrid”
GMRES (hGMRES in the figure) uses half or bfloat for the
GMRES iteration but uses double precision for computing
and storing the dot-products. As shown in the figure, storing
dot product results in double precision helps the half (fp16)
precision solver avoid breakdown.

Finally, Figure 10b shows the convergence history of sev-
eral mixed-precision GMRES variations. Here, dotted lines
are with hGMRES that computes and stores dot-products in
precision higher than that GMRES iteration uses (specified
after the ‘+’ sign in the legend). Though it may require
more iterations, mixed-precision GMRES with bfloat or half
precision can converge to double precision accuracy when the
dot-product is implemented carefully using a higher precision.
In particular, hGMRES using a combination of half and single
precisions for the “inner” iteration converged similarly to
uniform double precision GMRES; the combination of half
and bfloat resulted in a slower convergence rate (CUDA does
not currently support intrinsic casting between half and bfloat,
so we casted half to float before casting to bfloat).

These numerical results demonstrate the potential of using
various precisions for the benchmark implementation in order
to improve the computational performance or reduce the
communication volume.

B. Smoother Options

While we want HPGMP to provide flexibility to utilize vari-
ous precisions, the benchmark needs to validate that the mixed-
precision solver still converges to double-precision accuracy. If
lower-precision arithmetic leads to an increase in the iteration

count, then solver performance should be penalized “appro-
priately” to account for the additional operations required to
solve a real-life problem to convergence.

Figure 12 shows an extreme case, where we compare the
iteration count and time-to-solution of our reference imple-
mentation on NVIDIA V100 GPUs, with and without GMG
preconditioning. Without preconditioning, GMRES requires
more iterations to converge but has a shorter time-to-solution.
Hence, if GMG performance can be improved by using a
lower precision, then participants could use the lowest possible
precision for preconditioning and obtain the highest possible
performance, despite more iterations. The Validation phase
must capture this increase in the iteration count. However,
we note that our reference implementation relies on vendor-
optimized but generic libraries, which may not be ideal
for this particular case. With an optimized version of GS
smoothing, preconditioned GMRES may be faster than non-
preconditioned GMRES. This is one of our current investiga-
tion focuses (see Section X).

As we have seen, the performance and speedup available
from using lower precision arithmetic are primarily limited
by the GS smoother with SpTRSV. There have been exten-
sive studies to improve the parallel performance of GS and
SpTRSV on a GPU, but they may still not provide enough
parallelism to utilize the emerging manycore architectures,
and its performance may be limited by latency. While GS
with SpTRSV is a well-known and robust smoother option,
there are trends that favor other options with more parallelism
(e.g. a polynomial smoother with SpMV, though this option is
typically only available for symmetric matrices). We are con-
sidering whether the benchmark should capture these trends.

The speedup gained from using lower precision provides
good improvements in run-time for scientific applications.
However, the HPGMP speedup is much smaller than the
speedups obtained by the compute-bound HPL-AI benchmark,
due to the nature of sparse computation and communication
patterns, which are typical in applications. (The maximum
speedup for HPGMP is about 1.6× using single precision,
compared to 5 ∼ 10× obtained for HPL-AI). A potential
concern is that participants will not be motivated to optimize
and run the benchmark for such a relatively small speedup.

X. CONCLUSIONS AND NEXT STEPS

In this paper, we proposed a new benchmark called High-
Performance GMRES with Multi Precision (HPGMP). The
new benchmark ranks high-performance (HP) computers based
on how well they perform computational and communication
requirements typical in scientific applications while allowing
use of lower precision arithmetic. The paper presented our
initial design with the reference implementation and initial
performance studies. Considering current hardware and soft-
ware trends, an HP benchmark that allows use of different
precisions for solving important scientific problems will be
valuable for many disciplines.

We are making further performance and numerical investi-
gations, and these results will be available soon, including:

(a) Convergence plot.

No precond GMG precond
#GPUs #iters time-to-sol time/iter #iters time-to-sol time/iter

6 929 2.00 0.002 271 4.53 0.016
24 2456 6.35 0.002 676 11.94 0.017
96 6141 14.97 0.002 1376 25.91 0.019

(b) Iteration time in seconds.

Fig. 12: Comparison of uniform-precision GMRES in double
precision with or without preconditioner on Summit.

• Using an “optimized” GS implementation, combined with
matrix reordering to exploit more parallelism. This could
significantly impact the performance of the benchmark.
We have shown results using the default GS implementa-
tion in Kokkos-Kernels, but we are looking to see whether
further improvements are possible [13], [23].

• Using half or bfloat precision for the GMG precondi-
tioner. Since vendor libraries (like CuBLAS/CuSparse
and rocBLAS/rocSparse) do not provide full coverage of
half and bfloat precisions for the computational kernels
our benchmark requires, this will require custom CUDA
or HIP codes, or relying on libraries like Kokkos-Kernels.

• Running benchmark results on other top-ranked machines
at larger scales, and on emerging new architectures.

We aim to develop HPGMP into a solid benchmark suite that
promotes the design of future HP computers that achieve high
application performance utilizing lower precisions.

ACKNOWLEDGMENT

This work was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration. Sandia National Laborato-
ries is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA-0003525. This
paper describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the
paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

REFERENCES

[1] Extreme-scale scientific Software Development Kit for the Exascale
Computing Project (xSDK4ECP). https://www.exascaleproject.org/
research-project/xsdk4ecp.

[2] The High Performance LINPACK for Accelerator Introspection (HPL-
AI) benchmark. https://icl.utk.edu/hpl-ai.

[3] Hpgmp webpage. https://github.com/iyamazaki/hpcg/tree/hpgmp-cuda.
[4] Top500. https://www.top500.org.
[5] Ahmad Abdelfattah, Hartwig Anzt, Erik G. Boman, Erin Carson, Terry

Cojean, Jack Dongarra, Mark Gates, Thomas Grützmacher, Nicholas J.
Higham, Sherry Li, Neil Lindquist, Yang Liu, Jennifer Loe, Piotr
Luszczek, Pratik Nayak, Sri Pranesh, Siva Rajamanickam, Tobias
Ribizel, Barry Smith, Kasia Swirydowicz, Stephen Thomas, Stanimire
Tomov, Yaohung M. Tsai, Ichitaro Yamazaki, and Urike Meier Yang. A
survey of numerical methods utilizing mixed precision arithmetic, 2020.

[6] Patrick Amestoy, Alfredo Buttari, Nicholas Higham, Jean-yves
L’Excellent, Théo Mary, and Bastien Vieuble. Five-precision GMRES-
based iterative refinement. 2021.

[7] Patrick Amestoy, Alfredo Buttari, Nicholas Higham, Jean-yves
L’Excellent, Théo Mary, and Bastien Vieuble. Combining sparse
approximate factorizations with mixed precision iterative refinement.
Technical report, The University of Manchester, 2022.

[8] Oleg Balabanov and Laura Grigori. Randomized gram–schmidt process
with application to gmres. SIAM Journal on Scientific Computing,
44(3):A1450–A1474, 2022.

[9] Luc Berger-Vergiat, Brian Kelley, Sivasankaran Rajamanickam, Jonathan
Hu, Katarzyna Swirydowicz, Paul Mullowney, Stephen Thomas, and
Ichitaro Yamazaki. Two-stage Gauss-Seidel preconditioners and
smoothers for Krylov solvers on a GPU cluster, 2021.

[10] Daniel Bielich, Julien Langou, Stephen Thomas, Kasia Świrydowicz,
Ichitaro Yamazaki, and Erik G. Boman. Low-synch Gram–Schmidt with
delayed reorthogonalization for Krylov solvers. Parallel Computing,
112:102940, 2022.

[11] Erin Carson and Nicholas J. Higham. A New Analysis of Iterative
Refinement and Its Application to Accurate Solution of Ill-Conditioned
Sparse Linear Systems. SIAM Journal on Scientific Computing,
39(6):A2834–A2856, 2017.

[12] Erin Carson and Nicholas J. Higham. Accelerating the Solution of Linear
Systems by Iterative Refinement in Three Precisions. SIAM Journal on
Scientific Computing, 40(2):A817–A847, 2018.

[13] M. Deveci, E. G. Boman, K. D. Devine, and S. Rajamanickam. Parallel
graph coloring for manycore architectures. In IEEE Int. Par. Dist. Proc.
Symp. (IPDPS), pages 892–901, 2016.

[14] Jack Dongarra, Michael A Heroux, and Piotr Luszczek. High-
performance conjugate-gradient benchmark: A new metric for ranking
high-performance computing systems. The International Journal of High
Performance Computing Applications, 30:3–10, 2015.

[15] Jack Dongarra, Piotr Luszczek, and Antoine Petitet. The linpack
benchmark: Past, present, and future. Concurrency and Computation:
Practice and Experience, 15:803–820, 2003.

[16] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos:
Enabling manycore performance portability through polymorphic mem-
ory access patterns. Journal of Parallel and Distributed Computing,
74(12):3202–3216, 2014. Domain-Specific Languages and High-Level
Frameworks for High-Performance Computing.

[17] P. Ghysels, T. J. Ashby, K. Meerbergen, and W. Vanroose. Hiding global
communication latency in the GMRES algorithm on massively parallel
machines. SIAM Journal on Scientific Computing, 35(1):C48–C71, 2013.

[18] S. Gratton, E. Simon, D. Titley-Péloquin, and P. Toint. Exploiting
variable precision in GMRES. ArXiv, abs/1907.10550, 2019.

[19] M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving
linear systems. J. Nat. Bur. Standards, 49:409–436, 1952.

[20] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2nd edition, 2002.

[21] Nicholas J. Higham, Srikara Pranesh, and Mawussi Zounon. Squeezing a
matrix into half precision, with an application to solving linear systems.
SIAM Journal on Scientific Computing, 41(4):A2536–A2551, 2019.

[22] M. Hoemmen. Communication-avoiding Krylov subspace methods. PhD
thesis, EECS Department, University of California, Berkeley, 2010.

[23] B. Kelley and S. Rajamanickam. Parallel, portable algorithms for
distance-2 maximal independent set and graph coarsening. In 2022 IEEE

International Parallel and Distributed Processing Symposium (IPDPS),
pages 280–290, 2022.

[24] Neil Lindquist, Piotr Luszczek, and Jack Dongarra. Improving the
Performance of the GMRES Method using Mixed-Precision Techniques.
In Smoky Mountains Conference Proceedings, 2020.

[25] J. A. Loe, C. A. Glusa, I. Yamazaki, E. G. Boman, and S. Rajaman-
ickam. Experimental evaluation of multiprecision strategies for gmres on
gpus. In 2021 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 469–478, 2021.

[26] Stephen F. McCormick, Joseph Benzaken, and Rasmus Tamstorf. Alge-
braic error analysis for mixed-precision multigrid solvers. SIAM Journal
on Scientific Computing, 43(5):S392–S419, 2021.

[27] Sivasankaran Rajamanickam, Seher Acer, Luc Berger-Vergiat, Vinh
Dang, Nathan Ellingwood, Evan Harvey, Brian Kelley, Christian R Trott,
Jeremiah Wilke, and Ichitaro Yamazaki. Kokkos Kernels: Performance
portable sparse/dense linear algebra and graph kernels. arXiv preprint
arXiv:2103.11991, 2021.

[28] Y. Saad and M. Schultz. GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM Journal on
Scientific and Statistical Computing, 7:856–869, 1986.

[29] Daniel B. Szyld and Mark T. Jones. Two-stage and multisplitting
methods for the parallel solution of linear systems. SIAM Journal on
Matrix Analysis and Applications, 13(2):671–679, 1992.

[30] Kathryn Turner and Homer F. Walker. Efficient high accuracy solutions
with GMRES(m). SIAM J. Sci. Stat. Comput., 13(3):815–825, 1992.

[31] Yingqi Zhao, Takeshi Fukaya, Linjie Zhang, and Takeshi Iwashita.
Numerical investigation into the mixed precision gmres(¡i¿m¡/i¿) method
using fp64 and fp32. Journal of Information Processing, 30:525–537,
2022.

