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The models we use to analyze x-ray data in ICF experiments
routinely make simplifying assumptions that can impact our
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These simplifications can introduce bias into our analysis

How do we configure an instrument to give us useful information in the face of this kind of bias?




We constructed a simplified problem to develop a method
for optimizing filtered x-ray power detectors

PCDs are a workhorse diagnostic on Z, but their highly
integrating nature makes it difficult to extract source
information

Using a database of 1D MagLIF simulations to optimize the
detector and filter configurations to minimize uncertainty
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We use the fit to the reconstructed time-integrated
> ¥ spectrum as our optimization metric

There is no ambiguity in comparing a reconstructed spectrum to the simulation

Comparing physical quantities like temperature require a choice of mapping to the highly
complex experiment n
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PCD’s will saturate as the peak voltage approaches the bias
s 1 voltage

« The form of our model does not allow us to explicitly account
for this during the inference

« PCD’s measure power, our model produces an energy

» Accounting for this would require more physics be added to our
model 5. P

*  We must include a penalty term for configurations that produ_gea- ;
signals with large amplitude "
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DORD M =log(MSE + AL) Zop, = argmin ) M,

j=1

Procedure

1. Choose z (filter material and
thickness for each element)

2. Create O, from HFM output for
each element with chosen
configuration

3. sample posterior with chosen
configuration and new O,

4. Compute MSE from posterior
samples

5. Fit GP and compute El to select
new point

6. Go back to (1) with new choice,

iterate until stopping criterion is
reached

P.F. Knapp et al., under review, JPP
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calculations to train and validate our optimization
procedure
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Due computational
cost, only 4 training
and 16 validation
points were selected
from the ensemble

Support points were
used to ensure the
samples represent the
distribution
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The performance of the optimum was compared against

° ¥ two reference cases
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Our optimal configuration performs markedly better on the validation set



Our optimized configuration also performs better on some of the
physical parameters
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1 I Summary

*  We have demonstrated a general method to optimize instrumental configurations to
produce inferences with low combined variance and bias

« The metric utilizes the full posterior leveraging the uncertainty in the optimization

« The method explicitly acknowledges the impact of model assumptions in the
interpretation of data

* Future work will look at:
*  Optimizing additional metrics
« Pareto optimization to examine tradeoffs between e.g. bias and variance
* Incorporation of more instruments

- Ultimately, this technique can be used to assess the value of new data and optimize
proposed new instruments before they are built




