
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Oses for High Consequence
Applications; Might SeL4
benefit Nuclear Weapons?

Noah Evans, 8741

1

SAND2022-13934CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Our project: Deep Specifications of Sandia Systems of
interest

◦ Essential idea: write specifications and hardware together in formal language, proving:
A. That the specification is complete (i.e. not underspecified)
B. That the implementation obeys the specification for all possible executions of the hardware artifact.

◦ Can think of this approach as 100% unit testing.
◦ This approach was previously impractical (10-20 person years for an OS/Hardware system) for

everyone without billions of dollars to spend (i.e. Intel).
◦ New advances in “Proof Engineering” (Software engineering but for mathematics) makes it

possible to modularly and reusably write proofs for large systems.
◦ Most people at the conference are likely familiar with this kind of work.
◦ We’re looking at applying these techniques to Sandia Systems of Interest.

2

Requirements for Sandia Systems of Interest

 Our control systems are mostly low complexity, relatively easy to analyze, like a
dishwasher.

 But, they often have a large number of complex, high-consequence safety, security, and
reliability requirements.

 Low complexity + high consequence + complex requirements = ideal for a formal
approach to design and/or verification.

3

Heavily resource constrained: Back to the 80s future

This system is simple, dumb, and resource
constrained
We build from scratch
Our own fab, our own processor, our own
peripherals
Processor:

◦ 5-10 Mhz (can go 10-50 Mhz, for higher
requirements, or Khz for low power)

◦ X Mbytes of Ram
◦ 100k total storage for bootimages
◦ No MMU

 We write custom firmware to drive this
currently.

4

Proxy Architecture: a CubeSat analogous to Sandia
Systems

 Observation: Cubesats provide an unclassified
analog to Sandia’s typical sensitive systems of
interest.

◦ Low complexity: 3 microcontroller class systems
communicating over a bus

◦ High consequence: Any deviations from the
specification mean you burn up in the atmosphere.

◦ Complex requirements: RF Comms, Collision
Avoidance, Telemetry

Proxy firmware is hard real time and hard to verify

 The hypothetical firmware for this device is a simple event loop which counts cycles and
makes sure that certain events fire at particular multiples of the clock frequency to meet
real time deadlines.

 Very close to an old Nintendo Entertainment system where games were implemented by
using an event loop and cycle counting was used to blank the screen and communicate.

 This leads to code which is classic ”spaghetti code”. No clear separation of concerns
makes it very to modify let alone verify.

6

= =

An operating system would make real time and
verification easier

Productivity and security argument
 We want to be productive.
 Adding functionality is combinatorial
 Every new capability must be shown to not interfere with other capabilities meeting their
deadlines.

 If we could write processes as independent executables and let the OS handle the real time
constraints it would make it much easier to meet production deadlines.

Security:
Would allow us to compose proofs. Prove individual processes meet our needs, rather than
having to prove ad hoc over the entire firmware.

7

SeL4 meets a lot of our needs, verification and agility

 seL4 has…
◦ Proofs of correctness
◦ Full process model
◦ Capabilities and message passing make it much easier to reason about and prove things about

security.

 Would make system development at Sandia easier to formalize and more “agile”
◦ Don’t have to implement real-time by hand.
◦ Much easier to reason about formally
◦ Implement firmware as dynamic communicating processes

◦ Separate dynamic threads for communication channels using capabilities
◦ Threads for system housekeeping, telemetry data.

 But that still leaves us one big problem…

8

Roadblock: The missing MMU9

Not enough area on our ASIC.
Also doesn’t give us reliable real time guarantees
So, until we get more die and determinism, MMU’s are a
no go

If only someone had thought of MMU-less before10

Thought experiment, are there alternatives?

https://upload.wikimedia.org/wikipedia/commons/c/c5/Facepalm_%284254919655%29.jpg

Why not eChronos?

 Microkernel idea vs RTOS
◦ RTOSes are very much a roll your own package, why not standardize as much much as

possible?
◦ Roll your own communication, we’d love a standardized message passing
◦ Static process DAG, we’d love to experiment with dynamic process spawning
◦ RTOSes have no isolation guarantees, more proof obligations at the process level.

 Why not use a pre-existing message passing implementation (seL4)?

 Would really like a happy medium, ”full OS” flavor of an OS like seL4 but predictability
and lightweight requirements of eChronos

11

Alternative, Single Address Space OS

 MMU contention causes “QoS crosstalk”
◦ Makes it very hard to meet fine grained deadlines
◦ You never know how long it will take to get a page (am I going to

fault, is it in cache?)

 Why not stuff everything in the same address space?
◦ Process switching no longer requires switching between memory

contexts.

 Much easier to give real time guarantees and prevent QoS
cross-talk (e.g. Nemesis back in the 90s)

 Implementable on our existing hardware.
 However, big potential security problems.

◦ Requires proof of process isolation per process (no process
touches any other processes memory without permission)

◦ Still fails in response to physical insult (e.g. particle strikes)

12

Formal methods make a single address space possible

 Can prove isolation of individual processes

 If processes obey isolation guarantees and OS does not break those guarantees (e.g.
through system call information leakage), then the system is closed under isolation (i.e.
you don’t need an MMU assuming you are using position independent code)

 Keep track of memory bounds (base and offset) checking instead of virtual page tables
and indirection.

 Future work: side channel attacks, potential use case for CHERI archicture/PUMP-Dover
coprocessors

13

Not a full solution. Proofs assume nominal behavior

 What happens to the OS when you
processor is damaged?

◦ Malicious memory strobing
◦ Particle strikes to memory address lines

 Proofs of nominal behavior don’t help you
here.

◦ All of the behavioral assumptions are out
the window.

 Potentially another argument for the
PUMP-Dover approach

 But it’s also possible to do in the
processor…

14

Back to the future 2: Segmentation in a single address
space?

15

 If our systems are the best the 80s have to offer, what about the best in 80s
memory protection?

 Makes verifying a single address space OS much easier.
◦ Hardware isolation
◦ Proofs of process correctness much easier in the presence of physical insult to the

process memory

 Still begs certain questions
◦ How many segments to support? Processes limited by number of segments
◦ How to partition processes among segments?

◦ One segment per process?
◦ Separate data segments?

 Segmentation Image Credit: http://www.c-
jump.com/CIS77/ASM/Memory/lecture.html

Conclusions

 For high assurance low complexity systems a fully protected microkernel is too much for
our current hardware

 However, a single address space system with rigorous proofs of isolation between
processes assisted by segmentation might work.

◦ This allows you to minimize context switching (context switches become setjmps/longjmps)
◦ Deterministic behavior makes real time easier
◦ Traditional security issues are (potentially) obviated by formal methods and hardware support

Idea is not unique to me (Arun and Silviu at Draper and Dover microsystems have
compelling visions here)
It’s worth exploring a middle ground between verified systems like fully protected
microkernels like seL4 and RTOSes like eChronos.
Would potentially make systems development easier to verify and “agile” for high
consequence systems.

16

Acknowledgements

 Ray Richards (DARPA): Invitation and Support
 Lok Yan (AFRL): seL4 background and System Tradeoffs
 Abe Clements (Sandia): Segmentation background
 Ratish Punoose (Sandia): History of RTOSes at Sandia
 Jon Aytac (Sandia): Proxy Firmware Details
 Arun Thomas and Silviu Chiricescu (Draper): Ideas about single address space systems
for mission systems

 UPSAT project (University of Patras and Libre Space Foundation): Open Source
Cubesat Implementation

