This paper describes obijective technical results and analysis. Any subjective views or opinions that might/be expressed|in SAND2022-13934C
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Oses for High Consequence
Applications; Might SelL 4
benefit Nuclear Weapons?

PRESENTED BY
Noah Evans, 8741

— - —— — o I H""Eﬁ"GY NYSE

Nt Wecisar Scurty Acminisraton

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.
1 Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly.owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration/under contract' DE-NA0003525.

2 I Our project: Deep Specifications of Sandia Systems of
Interest

o Essential idea: write specifications and hardware together in formal language, proving:
A. That the specification is complete (i.e. not underspecified)
B. That the implementation obeys the specification for all possible executions of the hardware artifact.

o Can think of this approach as 100% unit testing.

o This approach was previously impractical (10-20 person years for an OS/Hardware system) for
everyone without billions of dollars to spend (i.e. Intel).

> New advances in “Proof Engineering” (Software engineering but for mathematics) makes it
possible to modularly and reusably write proofs for large systems.

> Most people at the conference are likely familiar with this kind of work.
o We're looking at applying these techniques to Sandia Systems of Interest.

I I Em B

3 I Requirements for Sandia Systems of Interest

Our control systems are mostly low complexity, relatively easy to analyze, like a
dishwasher.

But, they often have a large number of complex, high-consequence safety, security, and
reliability requirements.

Low complexity + high consequence + complex requirements = ideal for a formal
approach to design and/or verification,

—

@ high-consequence
controls

requirements
(number & complexity

@ generic
commercial

function complexity —

+ | Heavily resource constrained: Back to the 80s future

This system is simple, dumb, and resource
constrained

We build from scratch

Our own fab, our own processor, our own
peripherals

Processor:

o 5-10 Mhz (can go 10-50 Mhz, for higher
requirements, or Khz for low power)

o X Mbytes of Ram
> 100k total storage for bootimages
> No MMU

We write custom firmware to drive this
currently.

Proxy Architecture: a CubeSat analogous to Sandia

Systems
Observation: Cubesats provide an unclassified
analog to Sandia’s typical sensitive systems of
interest.

o Low complexity: 3 microcontroller class systems

Data Routing

Communicating Over a bus Power Regulation

> High consequence: Any deviations from the
specification mean you burn up in the atmosphere.

o Complex requirements: RF Comms, Collision
Avoidance, Telemetry

Attitude Control
Collision Avoidance
Remote Sensing

Telemetry
State of Health

LEGEND

A A

Physically
Separate Electro-
mechanical
Components

[— e —

I Clock Domain I
I Crossing |

— e e—]

SoC IP Block

« I Proxy firmware is hard real time and hard to verify

The hypothetical firmware for this device is a simple event loop which counts cycles and
makes sure that certain events fire at particular multiples of the clock frequency to meet
real time deadlines.

Very close to an old Nintendo Entertainment system where games were implemented by
using an event loop and cycle counting was used to blank the screen and communicate.

This leads to code which is classic "spaghetti code”. No clear separation of concerns

R <A

makes it verv to mod™=-'-* -'--- -

7 I An operating system would make real time and
verification easier

Productivity and security argument
We want to be productive.
Adding functionality is combinatorial

Every new capability must be shown to not interfere with other capabilities meeting their
deadlines.

If we could write processes as independent executables and let the OS handle the real time
constraints it would make it much easier to meet production deadlines.

Security:

Would allow us to compose proofs. Prove individual processes meet ~''» nnnde ratharthan
having to prove ad hoc over the entire firmware.

s I SeL4 meets a lot of our needs, verification and agility

selL4 has...
o Proofs of correctness
o Full process model

o Capabilities and message passing make it much easier to reason about and prove things about
security.

Would make system development at Sandia easier to formalize and more “agile”
o Don’t have to implement real-time by hand.
o Much easier to reason about formally

> Implement firmware as dynamic communicating processes
o Separate dynamic threads for communication channels using capabilities
o Threads for system housekeeping, telemetry data.

But that still leaves us one big problem...

Security. Performance. Proof.

o I Roadblock: The missing MMU

Not enough area on our ASIC.

Also doesn’t give us reliable real time guarantees

So, until we get more die and determinism, MMU’s are a
no go

o I If only someone had thought of MMU-less before

Can | run seL4 on an MMU-less microcontroller?

Using selL4 without a full memory-management unit (MMU) makes little sense, as its resource management is fundamentally
based on virtual memory. For lower-end processors that only have a memory-protection unit (MPU) or no memory protection at
all, you should look at NICTA's eChronos real-time operating system [# (RTOS), which is designed for such processors and is
also undergoing formal verification.

Thought experiment, are there alternatives?

https://upload.wikimedia.org/wikipedia/commons/c/c5/Facepalm_%284254919655%29.jpg

1 I Why not eChronos?

Microkernel idea vs RTOS

> RTOSes are very much a roll your own package, why not standardize as much much as
possible?

> Roll your own communication, we'd love a standardized message passing
o Static process DAG, we’d love to experiment with dynamic process spawning
> RTOSes have no isolation guarantees, more proof obligations at the process level.

Why not use a pre-existing message passing implementation (selL4)?

Would really like a happy medium, "full OS” flavor of an OS like selL4 but predictability
and lightweight requirements of eChronos

2 I Alternative, Single Address Space OS

MMU contention causes “QoS crosstalk”
o Makes it very hard to meet fine grained deadlines

> You never know how long it will take to get a page (am | going to
fault, is it in cache?)

Why not stuff everything in the same address space?

> Process switching no longer requires switching between memory
contexts.

Much easier to give real time guarantees and prevent QoS
cross-talk (e.g. Nemesis back in the 90s)

Implementable on our existing hardware.

However, big potential security problems.

> Requires proof of process isolation per process (no process
touches any other processes memory without permission)

o Still fails in response to physical insult (e.g. particle strikes)

13 I Formal methods make a single address space possible

Can prove isolation of individual processes

If processes obey isolation guarantees and OS does not break those guarantees (e.g.
through system call information leakage), then the system is closed under isolation (i.e.
you don’t need an MMU assuming you are using position independent code)

Keep track of memory bounds (base and offset) checking instead of virtual page tables
and indirection.

Future work: side channel attacks, potential use case for CHERI archicture/PUMP-Dover
COprocessors

DRAPER DLVER

MICROSYSTEMS

14 I Not a full solution. Proofs assume nominal behavior

What happens to the OS when you
processor is damaged?

o Malicious memory strobing
o Particle strikes to memory address lines

Proofs of nominal behavior don'’t help you
here.

o All of the behavioral assumptions are out
the window.

Potentially another argument for the
PUMP-Dover approach

But it's also possible to do in the
processor...

15 | Back to the future 2. Segmentation in a single address
space?

If our systems are the best the 80s have to offer, what about the best in 80s
memory protection?

Makes verifying a single address space OS much easier.
> Hardware isolation

> Proofs of process correctness much easier in the presence of physical insult to the
process memory

Still begs certain questions ACCESS | LIMIT

> How many segments to support? Processes limited by number of segments BASE ADDRESS
> How to partition processes among segments?
o One segment per process? ACCESS | LIMIT
o Separate data segments? BASE ADDRESS
Cs /
[=1=] ACCESS | LIMIT
DS . — | BASE ADDRESS
ES
ES __ ACCESS | LIMIT
Gs BASE ADDRESS R

M:c'.Ess| 1 o
BASE ADDRESS

Segmentation Image Credit: http://www.c-
jump.com/CIS77/ASM/Memory/lecture.html

A.CC‘E.SS' LIMIT

BASE ADDEESS

16 I Conclusions

For high assurance low complexity systems a fully protected microkernel is too much for
our current hardware

However, a single address space system with rigorous proofs of isolation between
processes assisted by segmentation might work.

> This allows you to minimize context switching (context switches become setjmps/longjmps)
o Deterministic behavior makes real time easier
o Traditional security issues are (potentially) obviated by formal methods and hardware support

|ldea is not unique to me (Arun and Silviu at Draper and Dover microsystems have
compelling visions here)

It's worth exploring a middle ground between verified systems like fully protected
microkernels like seL4 and RTOSes like eChronos.

Would potentially make systems development easier to verify and “agile” for high
consequence systems.

Acknowledgements

Ray Richards (DARPA): Invitation and Support

Lok Yan (AFRL): seL4 background and System Tradeoffs
Abe Clements (Sandia): Segmentation background
Ratish Punoose (Sandia): History of RTOSes at Sandia
Jon Aytac (Sandia): Proxy Firmware Details

Arun Thomas and Silviu Chiricescu (Draper): ldeas about single address space systems
for mission systems

UPSAT project (University of Patras and Libre Space Foundation): Open Source
Cubesat Implementation

