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Topology Optimization

* Topology Optimization
e Structural
* Photonics

* Most basic form

» Discretize problem
* Governing equations, boundary conditions
* Finite element setup
* Allocate a given amount of material across the points
* Density function (rho)
» Determine objective (cost) function to minimize
« Extinction ratio and temperature rise targets
* Solve finite element model
* Sensitivity analysis
» Updates
* Repeat

Mechanical Science and Engineering

Initialize
(Starting guess)

b

Finite element analysis
1
Sensitivity analysis
(linearization) :
|

’ Low—pass filtering ]
|
Optimization
Method of Moving Asymptotes
1
| Update design variables

yes

plot results/ /
post—processing /

Fig. 1.5. The flow of computations for topology design using the material distri-
bution method and the Method of Moving Asymptotes (MMA) for optimization.
The low-pass filter step (filtering of sensitivities) is discussed in Sec. 1.3.1.

Source: Bendsoe and Sigmund, "Topology Optimization: Theory, Methods, and Applications", 2003



Motivation

« Challenges
« Requires costly finite element solver calls each
iteration
« Large optimization problems
« ParallelComputing
« Advancediterative solvers
« Multi-scale or Multi-Resolution Approaches
« Neural Networks in Topology Optimization [1]
« Supplement
« Replace
« Solver
 Predict density function [2]

Degree of freedom (DOF)

Machine learning for photonic design
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Machine learning for photonic design [1]

[1]Z. Liu, D. Zhu, L. Raju, and W. Cai, “Tackling Photonic Inverse Design with Machine Learning”, Advanced Science, vol. 8, no. 5, p. 2 002 923, Mar. 2021.
[2] A. Chandrasekhar and K. Suresh, “TOuNN: Topology Optimization using Neural Networks”, Structural and Multidisciplinary Optimization, vol. 63, no. 3, pp. 1135-1149, Mar. 2021.
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Neural Network Based Topology Optimization
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bution method and the Method of Moving Asymptotes (MMA) for optimization.
The low-pass filter step (filtering of sensitivities) is discussed in Sec. 1.3.1.

Can we perform traditional topology optimization with a dual neural network approach?
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Optimization using ML

» Artificial Neural Networks (NNs)

Collection of nodes ("neurons")

Weights and biases

Non-linear activation function

Application examples: image classification, regression

» Utilize Convolutional Neural Networks (CNNs)

Heavily used for image recognition

Train model using labeled data (supervised model)
Replace solver call after training

Scanning an image, looking for patterns

Excels at image/pattern recognition

Dot product between kernel (filter) and feature combine to
create feature map

« Utilizing Pytorch, an open source ML package

Mechanical Science and Engineering
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Fig. 4 Tllustration of a simple network with one hidden layer of height 2

Source: Chandrasekhar and Suresh, "TOuUNN: Topology Optimization using
Neural Networks," https://doi.org/10.1007/s00158-020-02748-4

Input Filter Result
49|25 |83 2
1 0 1 |
5|6 |2|4|0]3
sk 1] 0 |- -
2 4 5 4 5 2 g
___________ 1] 0 |- f
5| 6|5 |4a|7]|38 !
Parameters: /
57 |7 |9|2]1 Size: f=3 [2=41+90+2:(1)+
Stride: §=1 51 + 670 + 2*(-1) +
slejslaje]e Padding: p=o 2+ 470+ 5¢1)
nxn, = 6x6 Wty indoml.com

Source: https://medium.com/analytics-vidhya/everything-you-need-to-know-
about-convolutional-neural-networ ks-cnns-3a82f7aa29c¢5



Optimization of an Optical Shutter using Machine Le

arning

 Application: sensor protection using optical shutter [1]
« Passive
« Thermal activation

Focal Plane Array (FPA) +
Readout Integrated
Circuit (ROIC)
(optical sensor)

Scene Light

epe . . e s fere~ \ . amemmmmsm====m======= >
« Utilize Vanadium Dioxide (vO,) ... >
« Phase change material High __ =-=====-=-=-=------~- y : ><
. : : Intensity __ -~~~ -~~~ """""""""""""° >
Flguresoofrr.\erlt | light —  —-mmmmmmm—o--- % >
* Extinctionratio DY
« Temperaturerise e > \/
__________________ .
_________________ >
_________________ - -F,
.. . Trie =00 meeeeeeemeeeeeaa- -4 -p
extinction ratio = E'R = 10 log;, Trms Shutter
met
. . Incoming | Reflectance [ | Transmittance
temperature rise = d71' = Final Temperature - 273.15 Light < >

[1] M. G. Wood, A. McKay, T. J. Morin, D. K. Serkland, T. S. Luk, S. L. Wolfley, L. Gastian, J. P. Mudrick, B. Jasperson, and H. T. Johnson, “
infrared sensor protection”, in 2021 Conference on Lasers and Hectro-Optics (CLEO), 2021, pp. 1-2.
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+ Absorptance

Optically-triggered optical limiters for short-wavelength




Design considerations

Scene Light [I I I [I
vV V.V vV
No Film Full Film Pixelated Design
Low Extinction High Extinction Intermediate Extinction
No Temp Rise Avg Temp Rise Improved Temp Rise?

Can we find a pixelated design that maximizes temperature rise for a given extinctionratio?
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Topology Optimization Flow
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Topology Optimization Neural Network
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Performance Neural Network

4x Convolutional Layers + ReLU
1x Fully Connected Linear Layer

Y. image
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Nx2x10x10
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Kernel: 3x3 Kernel: 3x3
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Extinction ratio,
Temperature Rise
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Convert Physical Design to Input Image for PerfNN

Design as Input Image

(10x10) Channel 0 =
(20x20) 240 nm thick SiO,

Symmetry about
X-axis and y-axis

N
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(10x10) Channel 1=
400 nm thick VO,
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Generating Training Data with COMSOL

Generate

~15,000 Import Image
Random to COMSOL
Images

Nx2x20x20
Unit cell: 2 um x 2 um

Sub pixel: 100 nm x 100 nm
240 nm SiO,
400 nm VO,
Glass Substrate
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Generating Training Data with COMSOL
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Generating Training Data with COMSOL

Training Data

10

Temperature Rise - K
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Extinction Ratio [dB] = 10log;g. ™
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Training the Performance Neural Network
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Training the Topology Optimization Neural Network

Test data generated with arbitrary cost function shows good performance Loss =) > lai— til
* Random "ideal" image selected

. Trinsulating =1-0.5 Lj;OSSS
* Dummy loss function ot
1 n 1 n M M Trm.efallic = O5L
* Translate loss into "predicted" Ext Ratio, Temp Rise
dT =10 (1 __Loss )
LoSSa
target image optimized design after 1 epoch final image
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Training the Topology Optimization Neural Network

Sample Designs
(Glass Substrate + 400 VO, + 240 SiO,)

Design1 Design 2 Design 3 Checkerboard
0.0 0.0
-1 HHHEN
SLE R B N
1.5 7.5 1
100 ol 1 H Il B
12.5 12.5 4
H EHEEBN
15.0 15.0 A
17.5 1751 . . . . .
0 5 10 15 5 10 0 5 10 15
Design 1 Design 2 Design 3 Checkerboard Circle Array
Method NN COMSOL NN COMSOL NN COMSOL COMSOL COMSOL
Extinction Ratio 10.01 1214 10.22 8.96 10.03 1144 12.39 1014
Temperature Rise 1094 13.77 1149 11.31 11.83 13.86 2.45 14.1
Percent Coverage 70% 68% 65% 75% 61%
= i
Design 1 vs Design 3 (3x3 shown) . .
- .
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Optimized Design Performance
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Conclusion/Future Work E

 Dual neural networks for topology optimization
* Performance Neural Network
* Topology Optimization Neural Network

* Future work
* Fabrication and testing of (3x) designs

 Transfer learning: use simple model to pre-train PerfNN and use
with more complex, coupled, EM/thermal time domain simulation
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Neural Network Details E

* PerfNN * TopOptNN
* Convolutional NN * Fully-connected feed-forward NN
* Four hidden layers + FC output * Five FC hidden layers + Softmax
* Varying number of feature output
maps, stride and padding * Includes batch normalization
* Activation function: ReLU * Activation function: Leaky ReLU
* Qutput: Extinctionratio and dT  Qutput: first column of softmax
e Loss function: MSE probability distribution is used as

density
* SIMP-like constraint
* Image =xP[400,240]
 Loss function: see slide
* Adam optimizer

* Adam optimizer




Training Data
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