

Optimization of an Optical Shutter using Machine Learning

Benjamin A. Jasperson¹, Michael G. Wood², Harley T. Johnson¹

Presented at: Society of Engineering Science Annual Technical Meeting

Texas A&M Engineering Experiment Station

October 16-19, 2022

(1) Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, IL, USA

(2) Sandia National Laboratories, Albuquerque, NM, USA

SAND# X123456789

This material is based upon work supported by the National Science Foundation under Grant No. 1922758

- Topology Optimization
 - Structural
 - Photonics
- Most basic form
 - Discretize problem
 - Governing equations, boundary conditions
 - Finite element setup
 - Allocate a given amount of material across the points
 - **Density function (rho)**
 - Determine objective (cost) function to minimize
 - Extinction ratio and temperature rise targets
 - **Solve finite element model**
 - Sensitivity analysis
 - Updates
 - **Repeat**

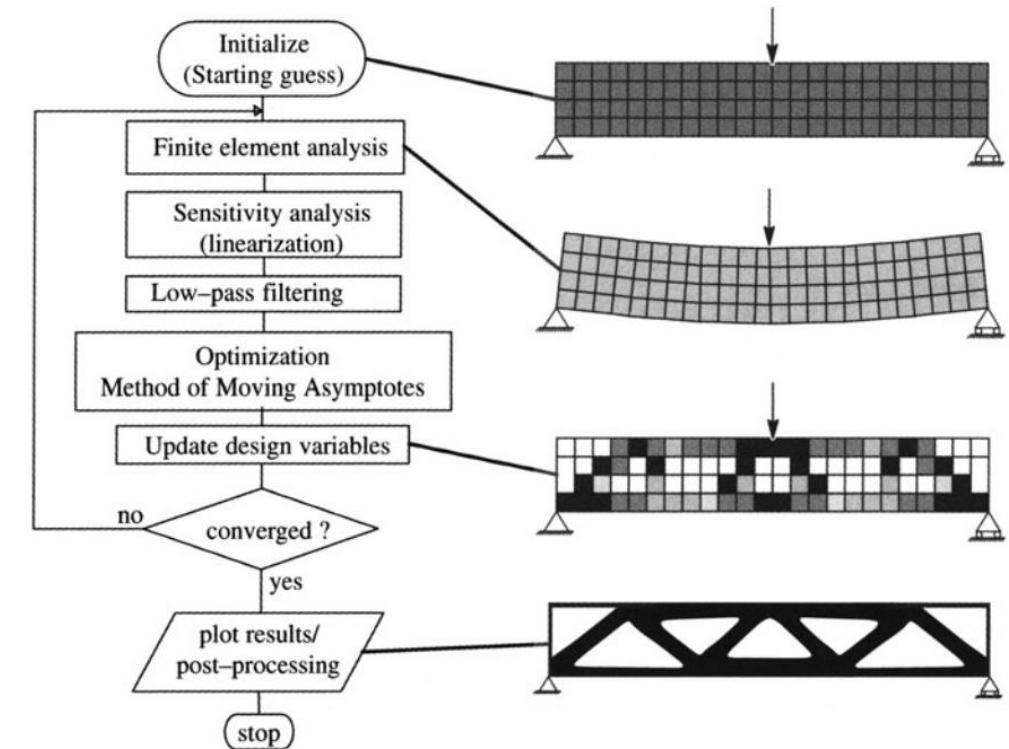
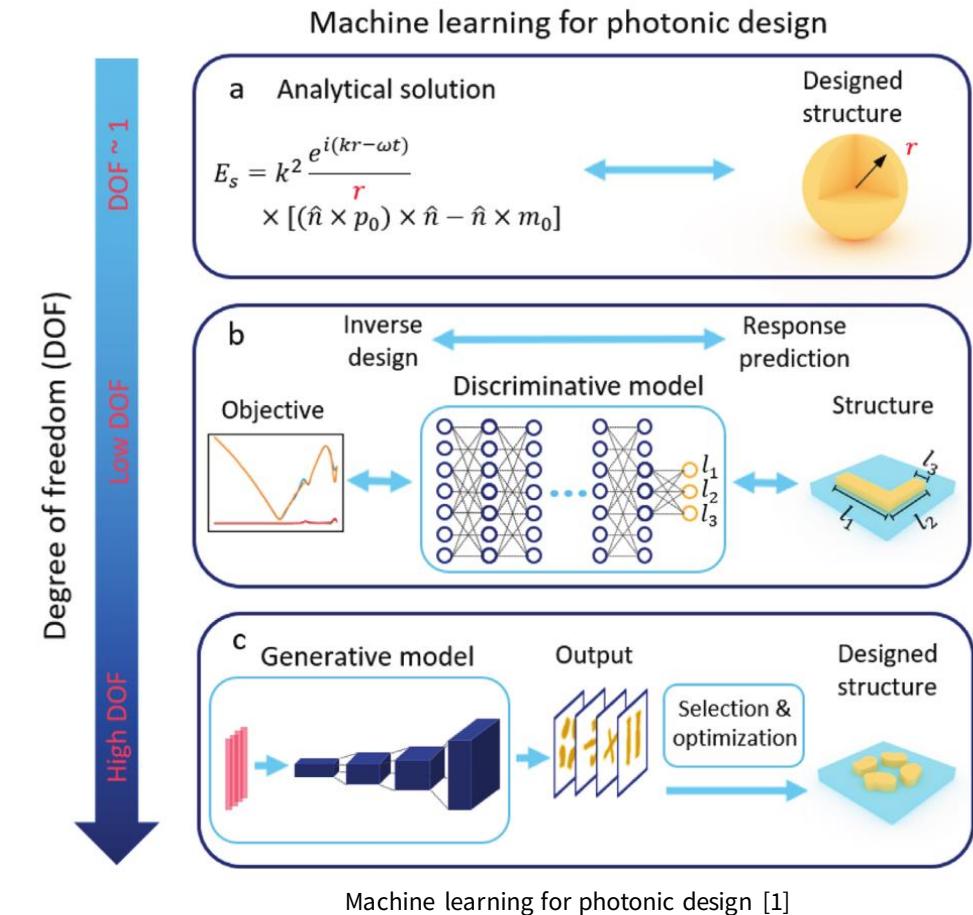


Fig. 1.5. The flow of computations for topology design using the material distribution method and the Method of Moving Asymptotes (MMA) for optimization. The low-pass filter step (filtering of sensitivities) is discussed in Sec. 1.3.1.

Source: Bendsoe and Sigmund, "Topology Optimization: Theory, Methods, and Applications", 2003

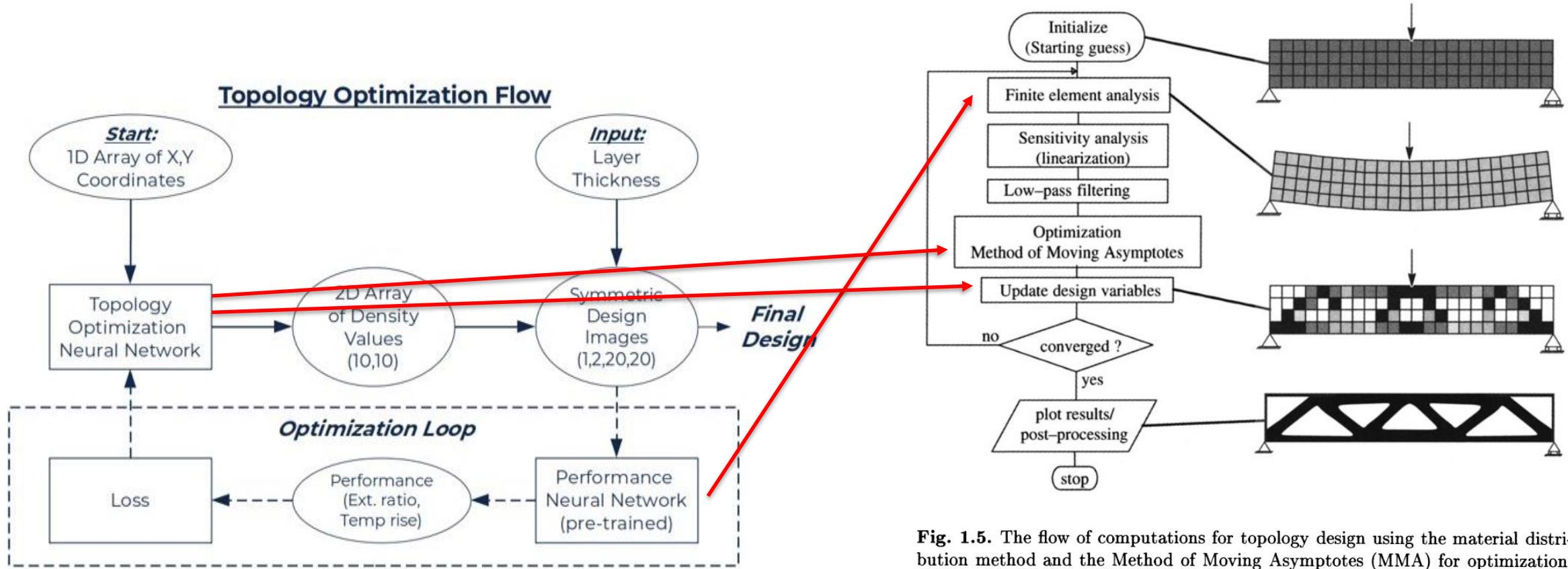
- Challenges
 - **Requires costly finite element solver calls each iteration**
 - Large optimization problems
 - Parallel Computing
 - Advanced iterative solvers
 - Multi-scale or Multi-Resolution Approaches
- Neural Networks in Topology Optimization [1]
 - Supplement
 - Replace
 - Solver
 - Predict density function [2]



[1] Z. Liu, D. Zhu, L. Raju, and W. Cai, "Tackling Photonic Inverse Design with Machine Learning", *Advanced Science*, vol. 8, no. 5, p. 2 002 923, Mar. 2021.

[2] A. Chandrasekhar and K. Suresh, "TOuNN: Topology Optimization using Neural Networks", *Structural and Multidisciplinary Optimization*, vol. 63, no. 3, pp. 1135–1149, Mar. 2021.

Neural Network Based Topology Optimization



Can we perform traditional topology optimization with a dual neural network approach?

Optimization using ML

- Artificial Neural Networks (NNs)
 - Collection of nodes ("neurons")
 - Weights and biases
 - Non-linear activation function
 - Application examples: image classification, regression
- Utilize Convolutional Neural Networks (CNNs)
 - Heavily used for image recognition
 - Train model using labeled data (supervised model)
 - Replace solver call after training
 - Scanning an image, looking for patterns
 - Excels at image/pattern recognition
 - Dot product between kernel (filter) and feature combine to create feature map
- Utilizing Pytorch, an open source ML package

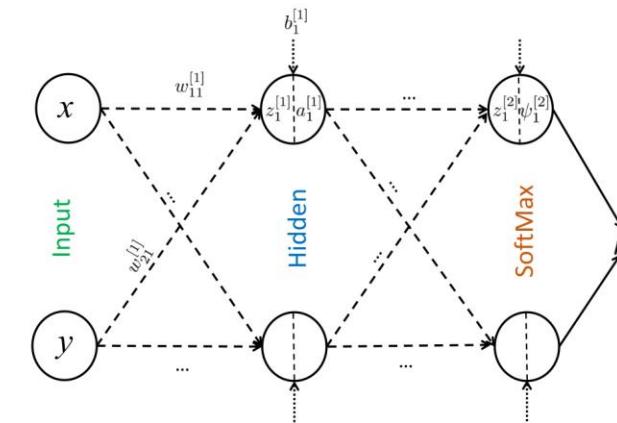
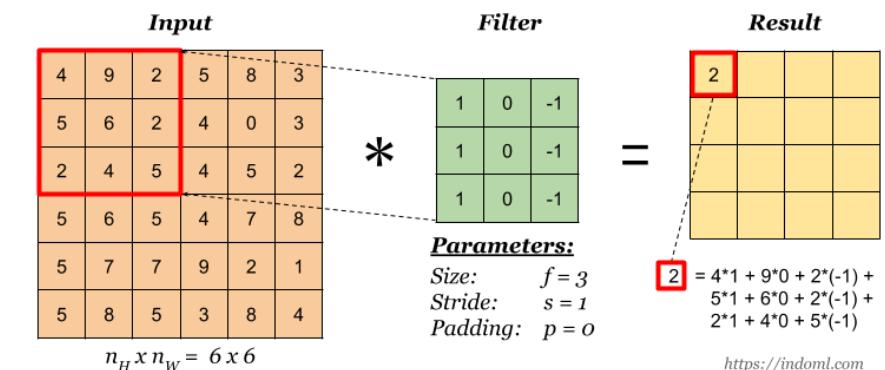


Fig. 4 Illustration of a simple network with one hidden layer of height 2

Source: Chandrasekhar and Suresh, "TOuNN: Topology Optimization using Neural Networks," <https://doi.org/10.1007/s00158-020-02748-4>



Source: <https://medium.com/analytics-vidhya/everything-you-need-to-know-about-convolutional-neural-networks-cnns-3a82f7aa29c5>

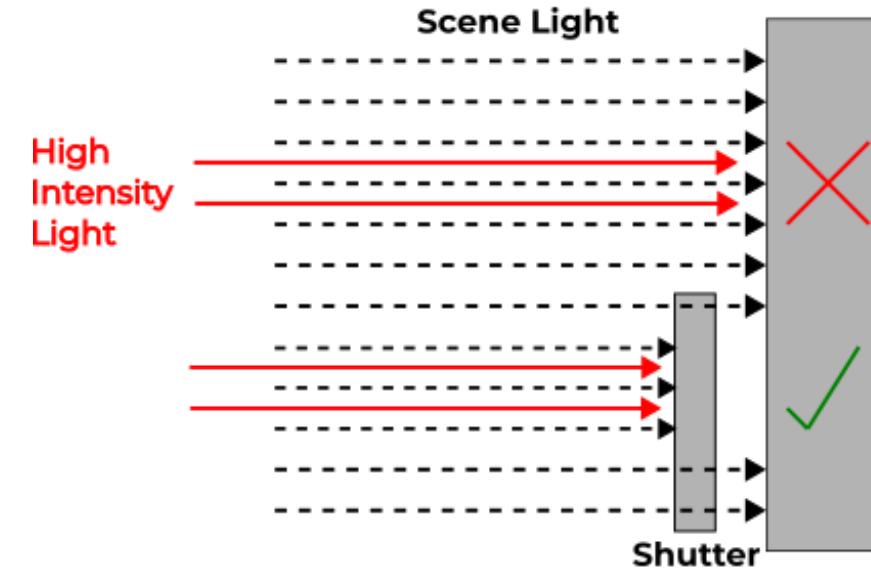
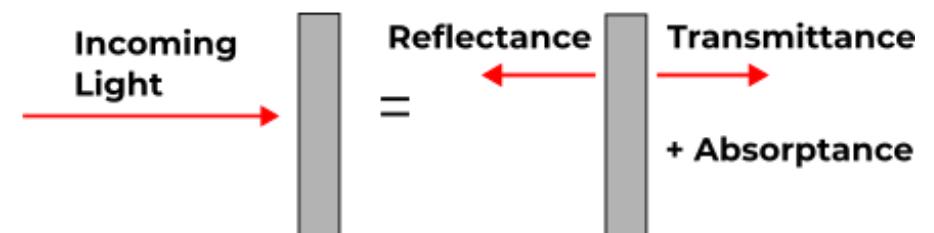
Optimization of an Optical Shutter using Machine Learning

- **Application:** sensor protection using optical shutter [1]
 - Passive
 - Thermal activation
- Utilize **Vanadium Dioxide (VO₂)**
 - Phase change material
- Figures of merit
 - Extinction ratio
 - Temperature rise

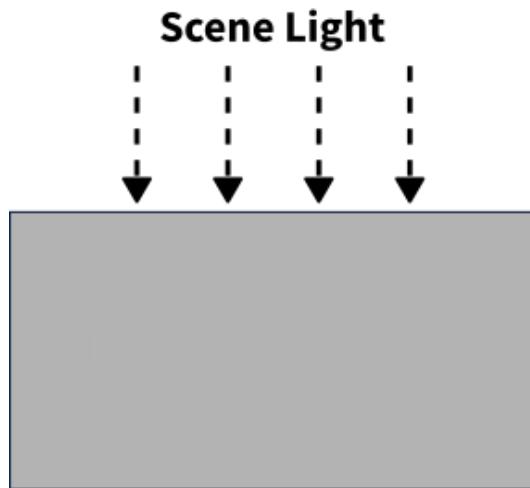
$$\text{extinction ratio} = ER = 10 \log_{10} \frac{Tr_{ins}}{Tr_{met}}$$

$$\text{temperature rise} = dT = \text{Final Temperature} - 273.15$$

Focal Plane Array (FPA) +
Readout Integrated
Circuit (ROIC)
(optical sensor)

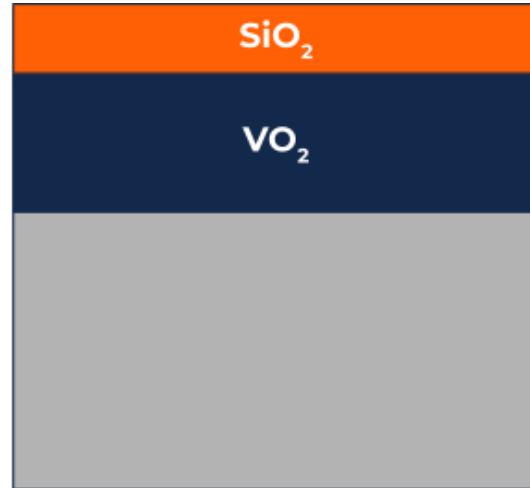


[1] M. G. Wood, A. McKay, T. J. Morin, D. K. Serkland, T. S. Luk, S. L. Wolfley, L. Gastian, J. P. Mudrick, B. Jasperson, and H. T. Johnson, "Optically-triggered optical limiters for short-wavelength infrared sensor protection", in 2021 Conference on Lasers and Electro-Optics (CLEO), 2021, pp. 1–2.



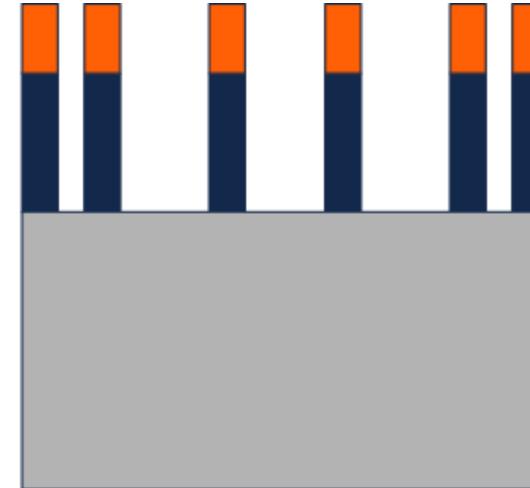
No Film

Low Extinction
No Temp Rise



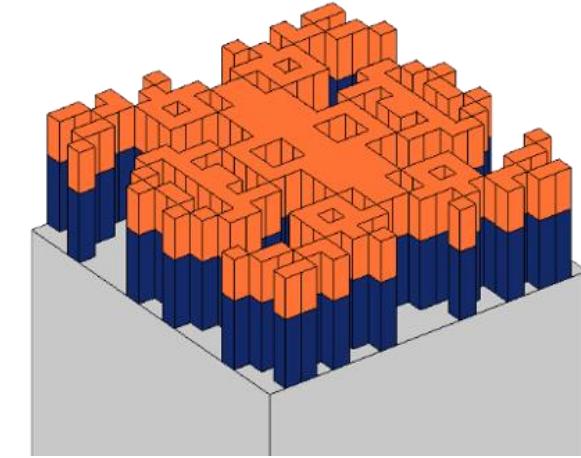
Full Film

High Extinction
Avg Temp Rise



Pixelated Design

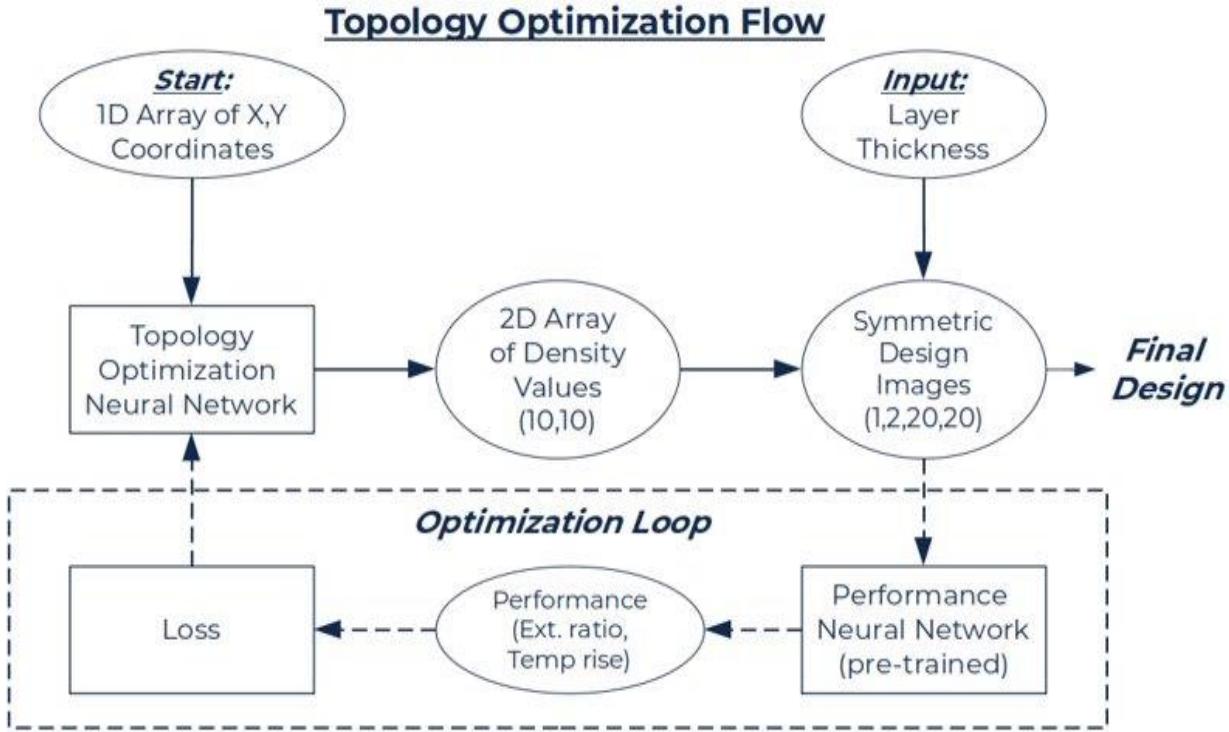
Intermediate Extinction
Improved Temp Rise?



Can we find a pixelated design that maximizes temperature rise for a given extinction ratio?

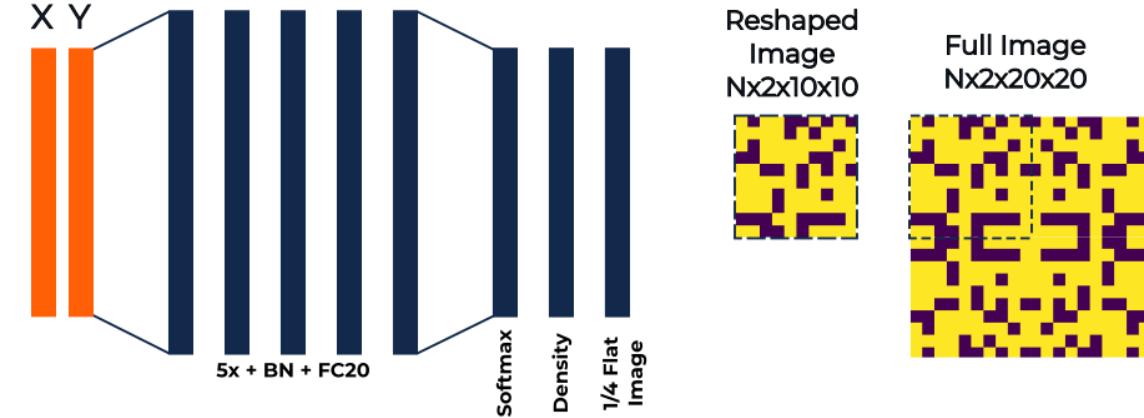
Topology Optimization Flow

I

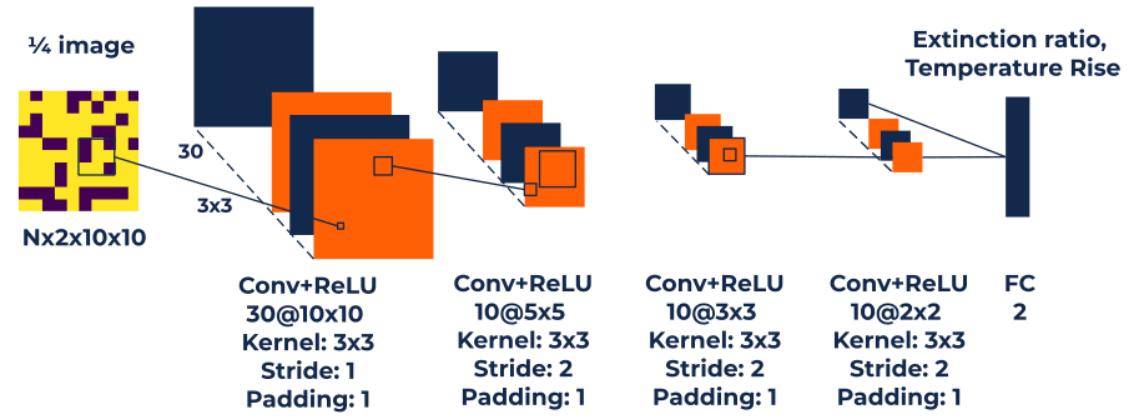


$$\text{Loss} = \left(\frac{ER_{pred} - ER_{target}}{ER_{target}} \right)^2 + \left(\frac{dT_{pred} - dT_{target}}{dT_{target}} \right)^2$$

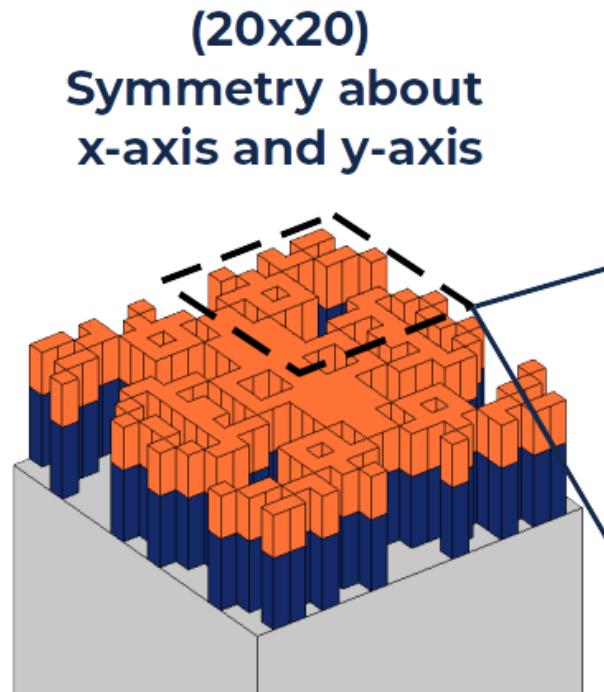
Topology Optimization Neural Network
(5x) Batchnorm + Linear hidden layers
(20 nodes per layer)



Performance Neural Network
4x Convolutional Layers + ReLU
1x Fully Connected Linear Layer



Design as Input Image



(10x10) Channel 0 =
240 nm thick SiO_2

0	240	240	0	...
240	240	240	240	...
0	240	240	240	...
240	240	240	240	...
...

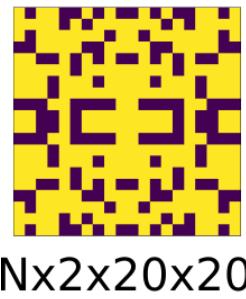
(N,2,10,10)
to PerfNN

0	400	400	0	...
400	400	400	400	...
0	400	400	400	...
400	400	400	400	...
...

(10x10) Channel 1 =
400 nm thick VO_2

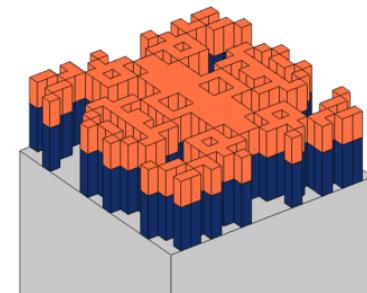
Generating Training Data with COMSOL

Generate
~15,000
Random
Images

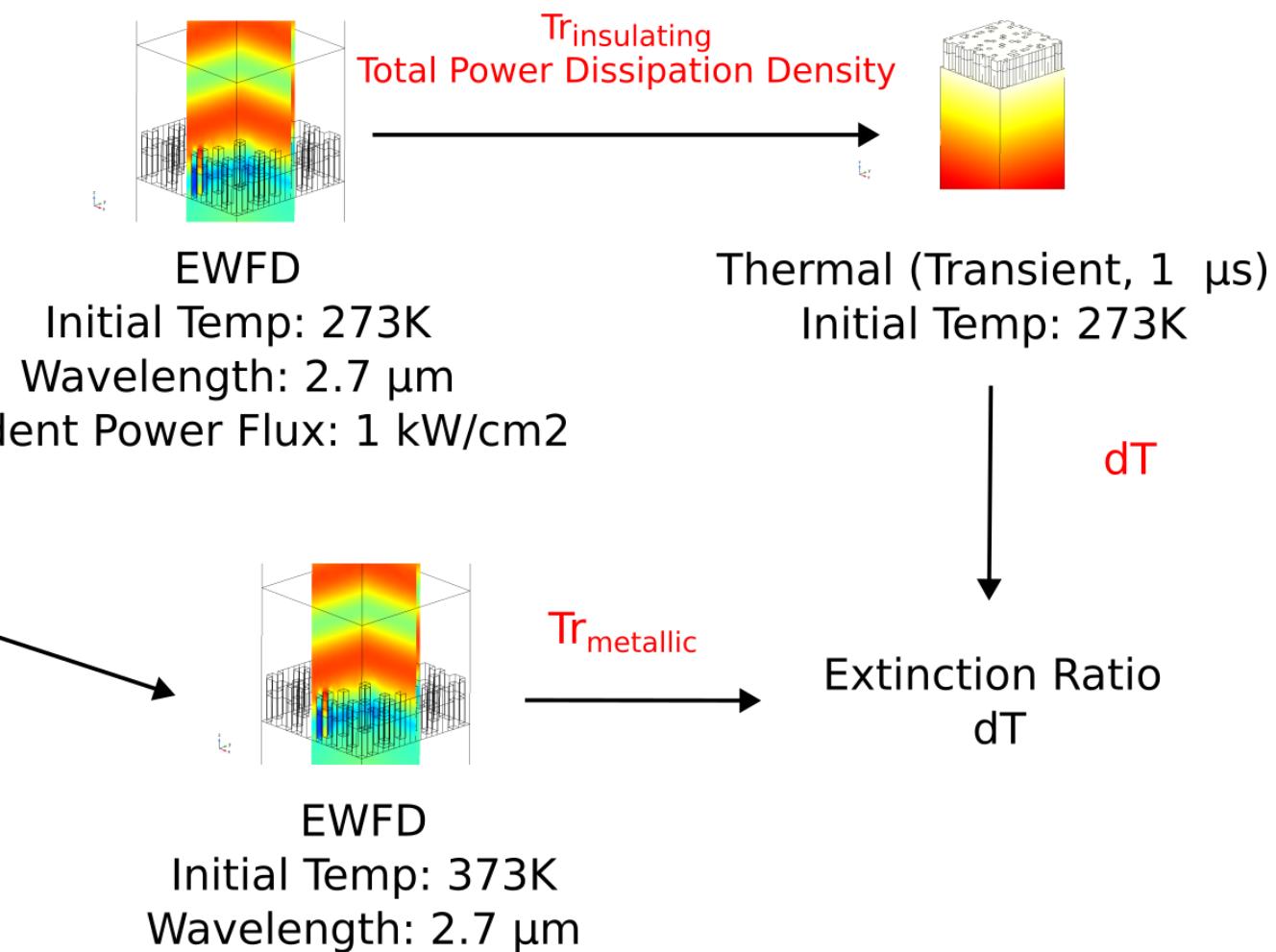


$N \times 2 \times 20 \times 20$

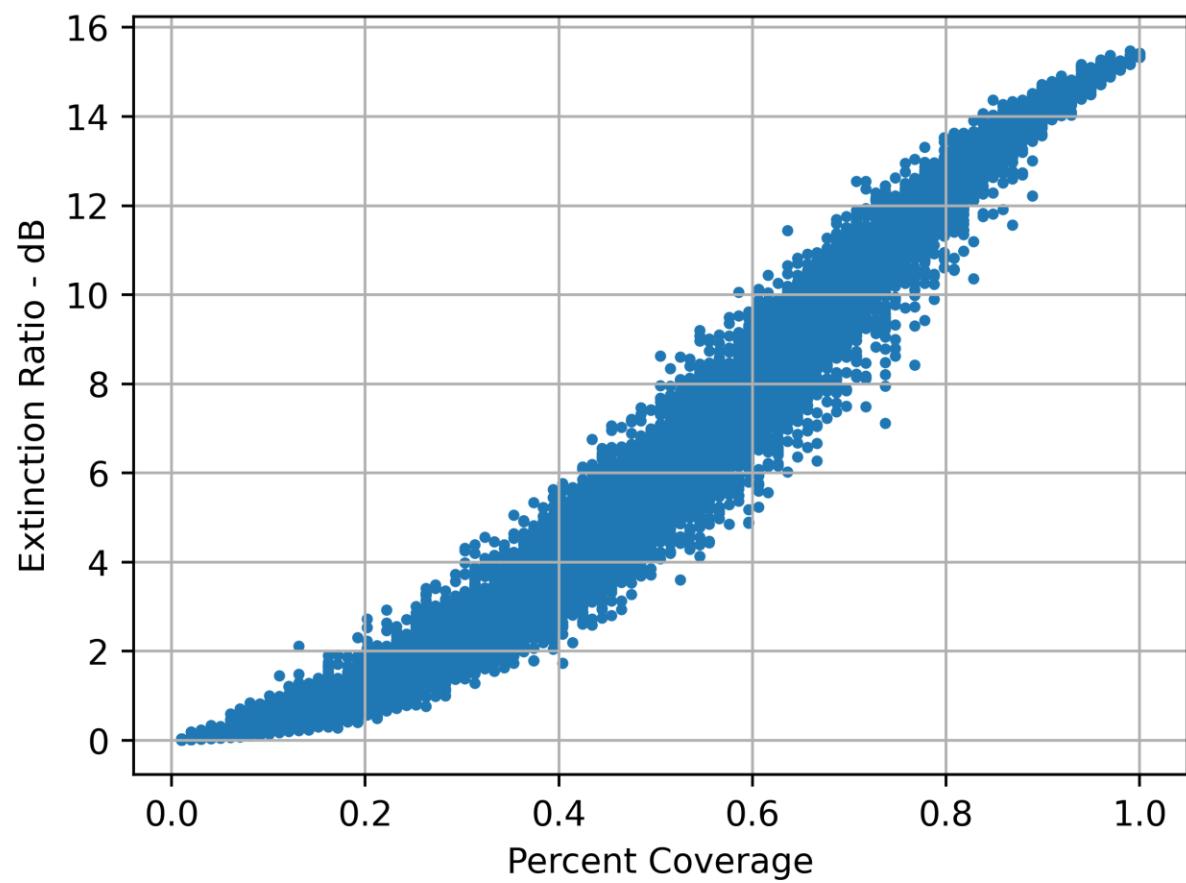
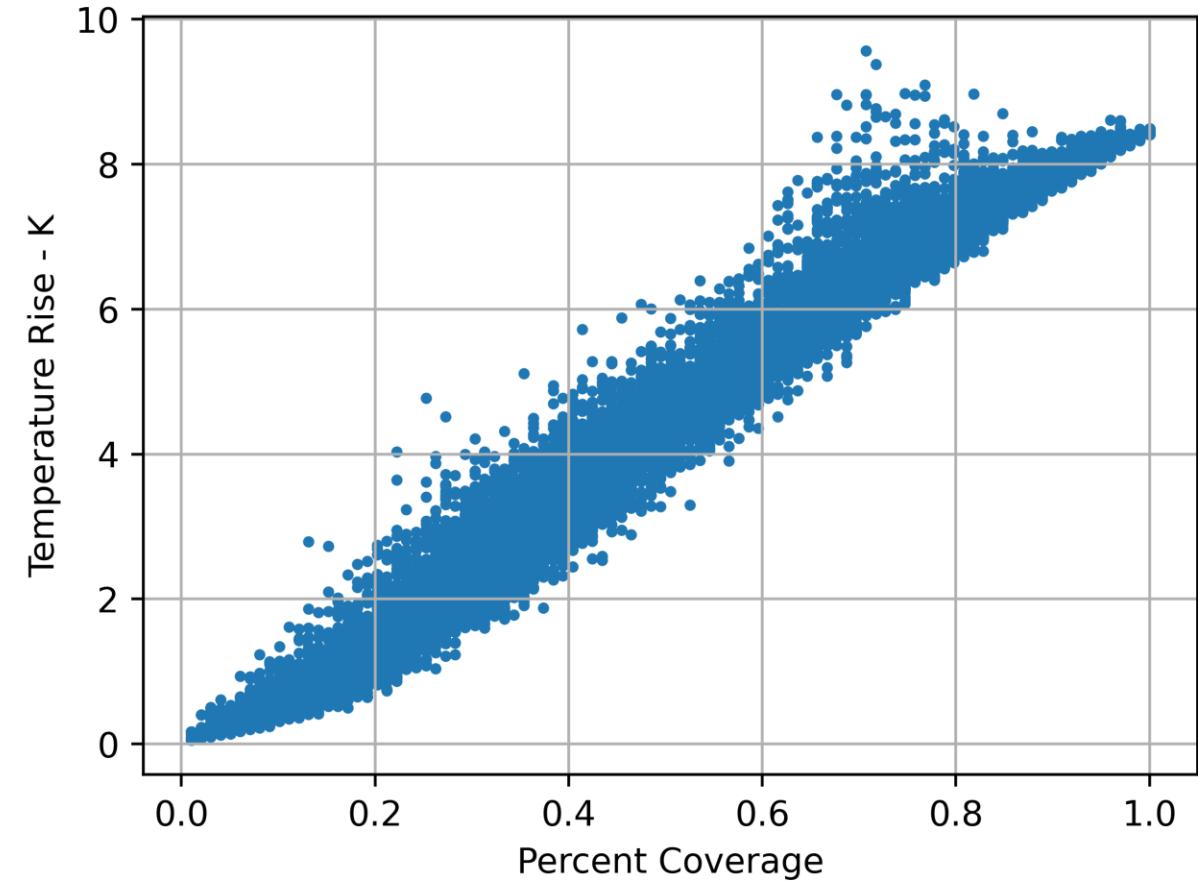
Import Image
to COMSOL



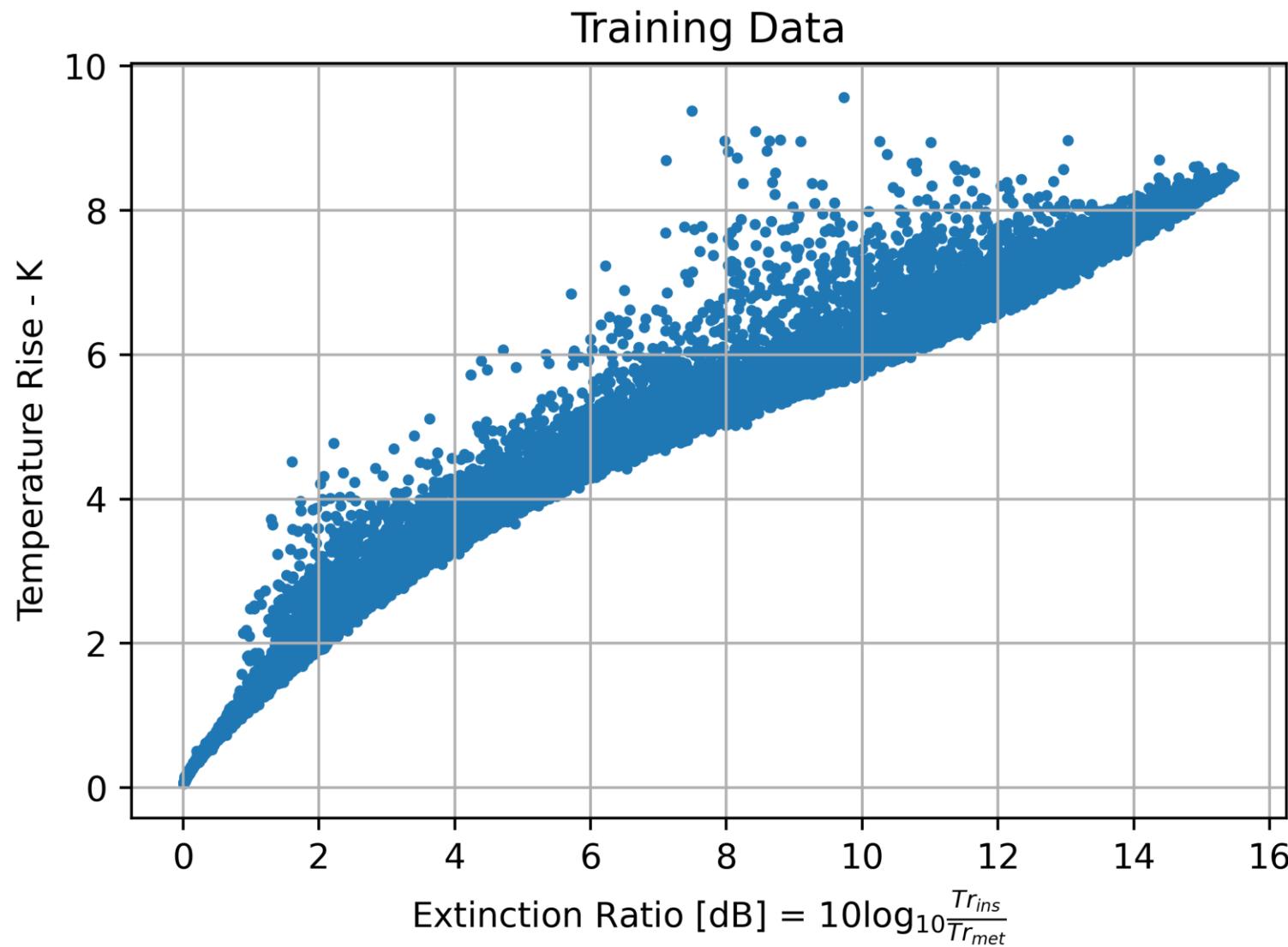
Unit cell: $2 \mu\text{m} \times 2 \mu\text{m}$
Sub pixel: $100 \text{ nm} \times 100 \text{ nm}$
240 nm SiO_2
400 nm VO_2
Glass Substrate



Generating Training Data with COMSOL



Generating Training Data with COMSOL

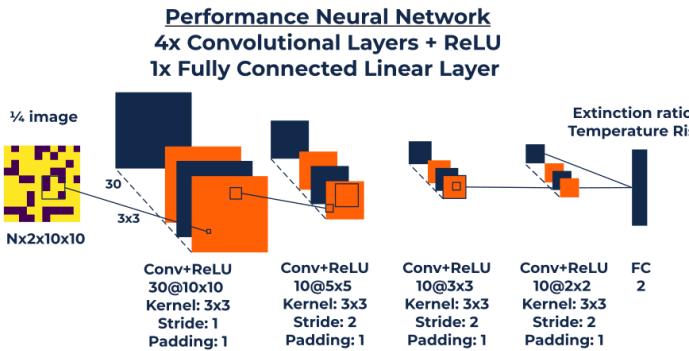
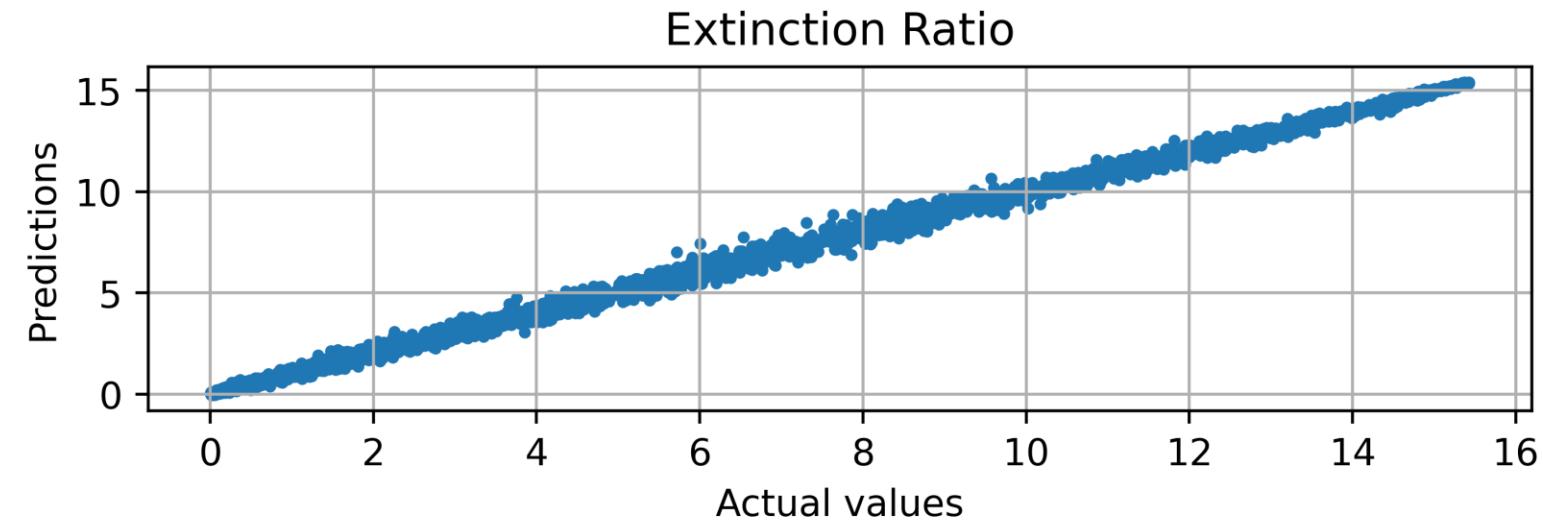
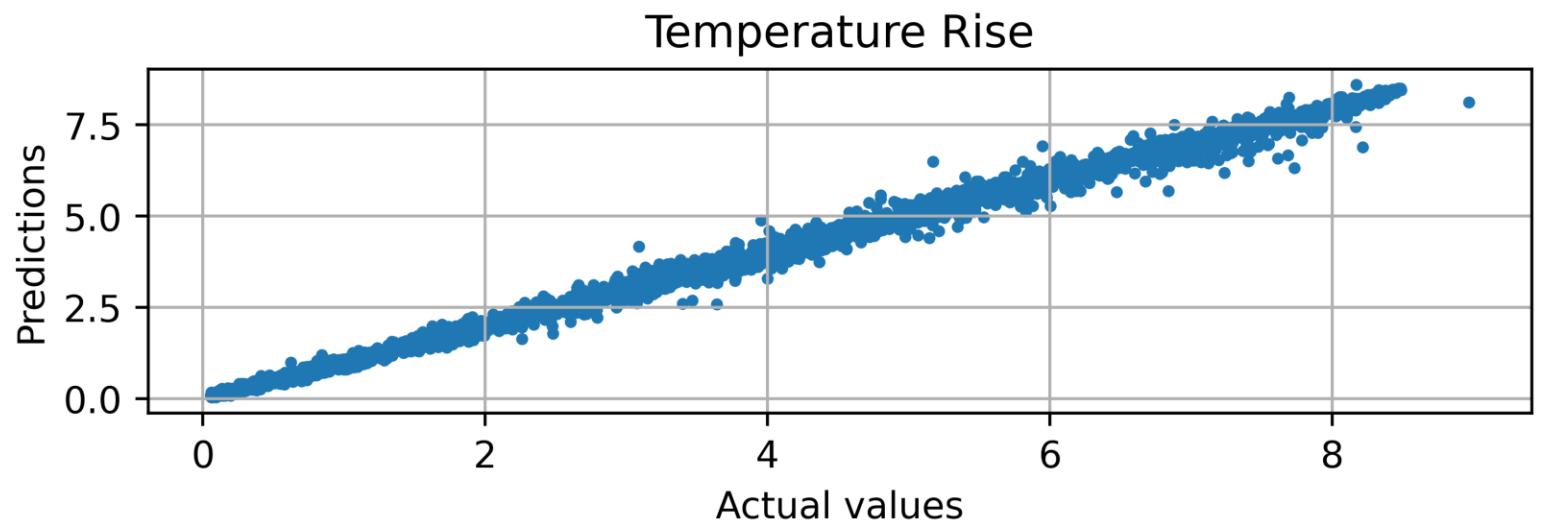


Training the Performance Neural Network

Trained performance:

- Avg abs error
 - ~13% Ext. Ratio
 - ~5.75% dT
- Maximum difference
 - ~1.44 dB ext. Ratio
 - ~1.4 K dT

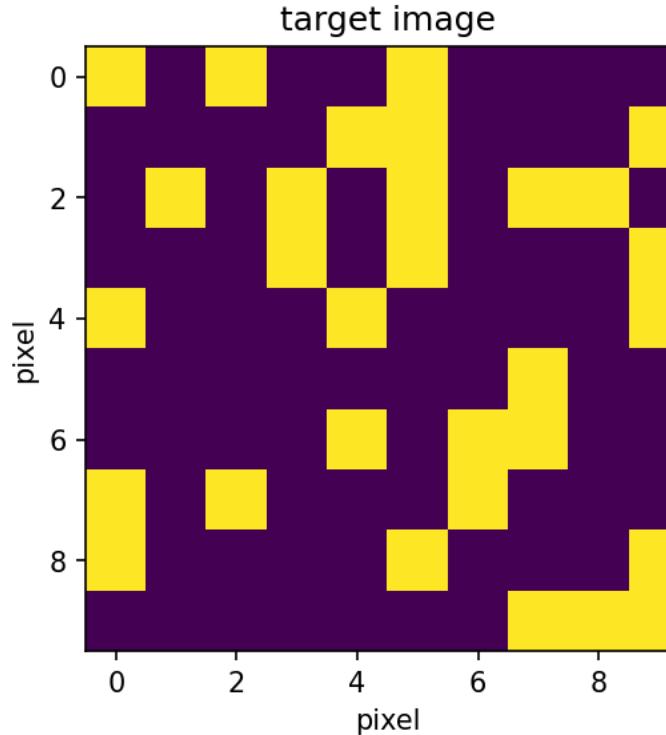
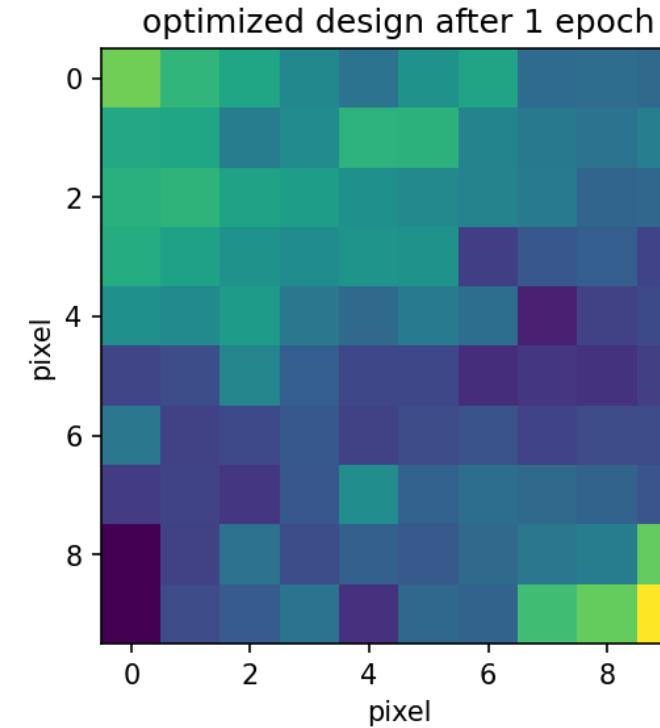
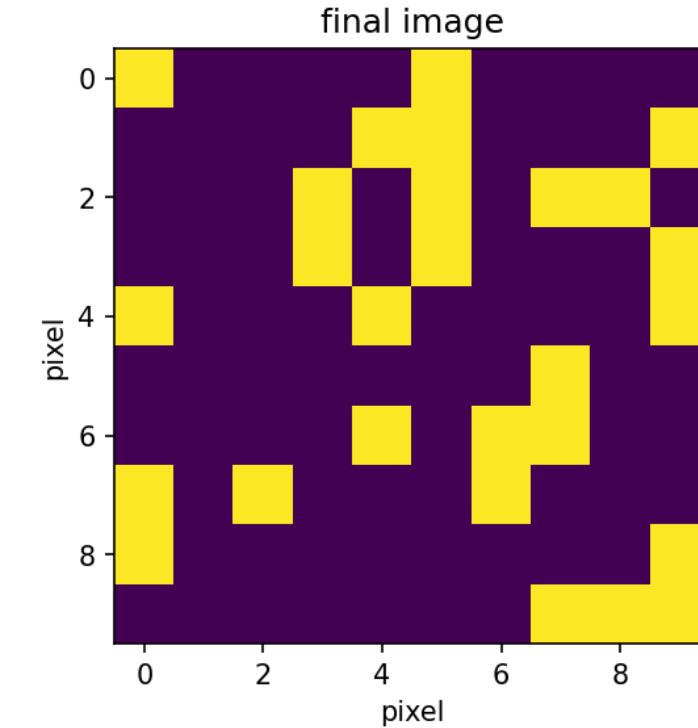
Average absolute error:
$$\frac{1}{N} \sum_{i=1..N} \frac{|\text{pred}_i - \text{actual}_i|}{\text{actual}_i}$$



Training the Topology Optimization Neural Network

Test data generated with arbitrary cost function shows good performance

- Random "ideal" image selected
- Dummy loss function
- Translate loss into "predicted" Ext Ratio, Temp Rise



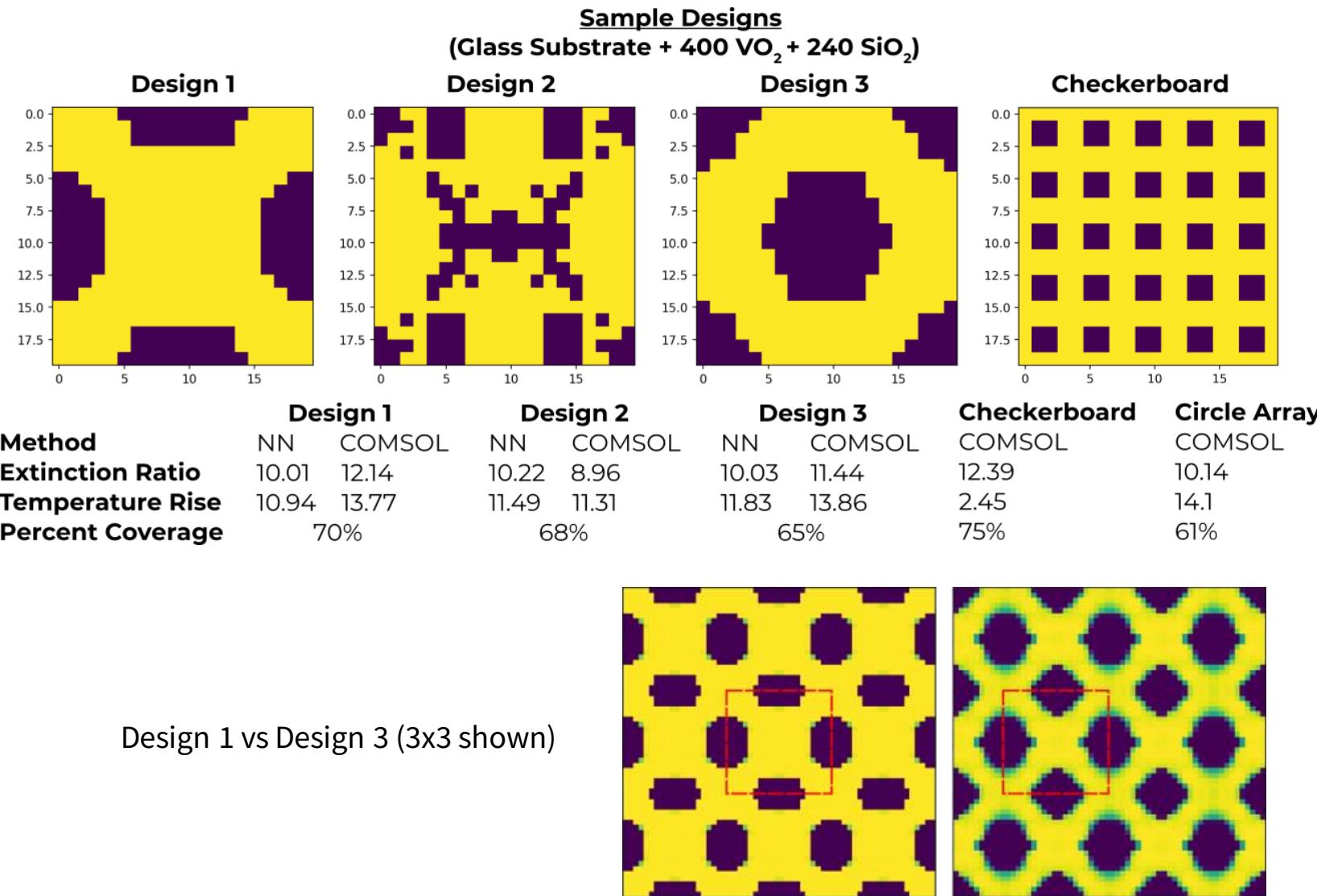
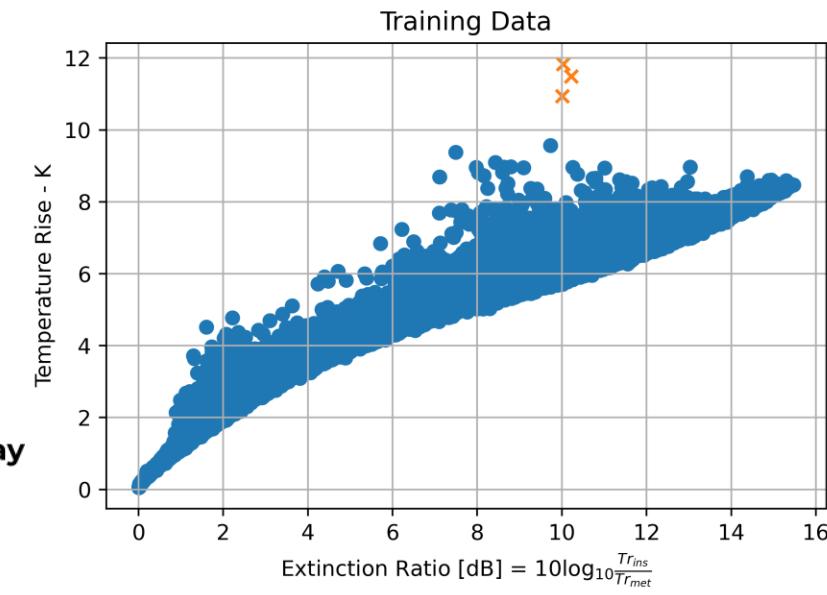
$$Loss = \sum_i \sum_j |x_{i,j} - t_{i,j}|$$

$$Tr_{insulating} = 1 - 0.5 \frac{Loss}{Loss_{max}}$$

$$Tr_{metallic} = 0.5 \frac{Loss}{Loss_{max}}$$

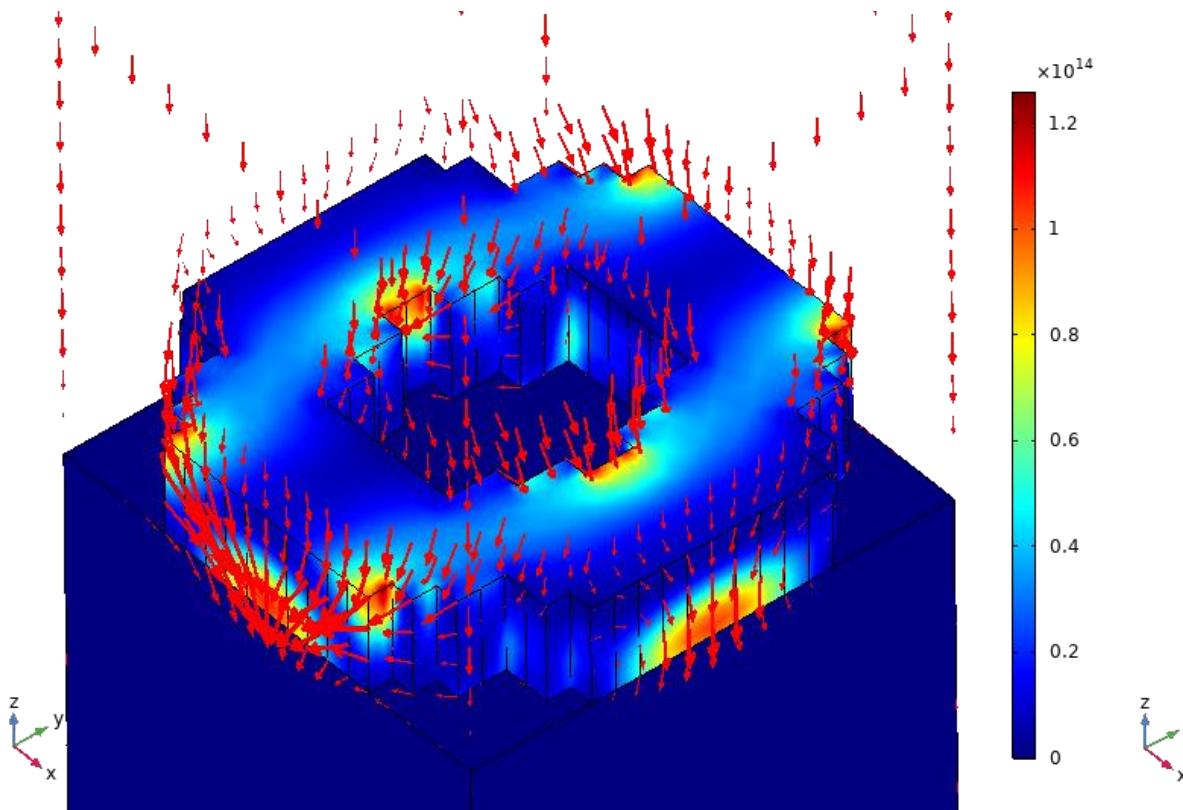
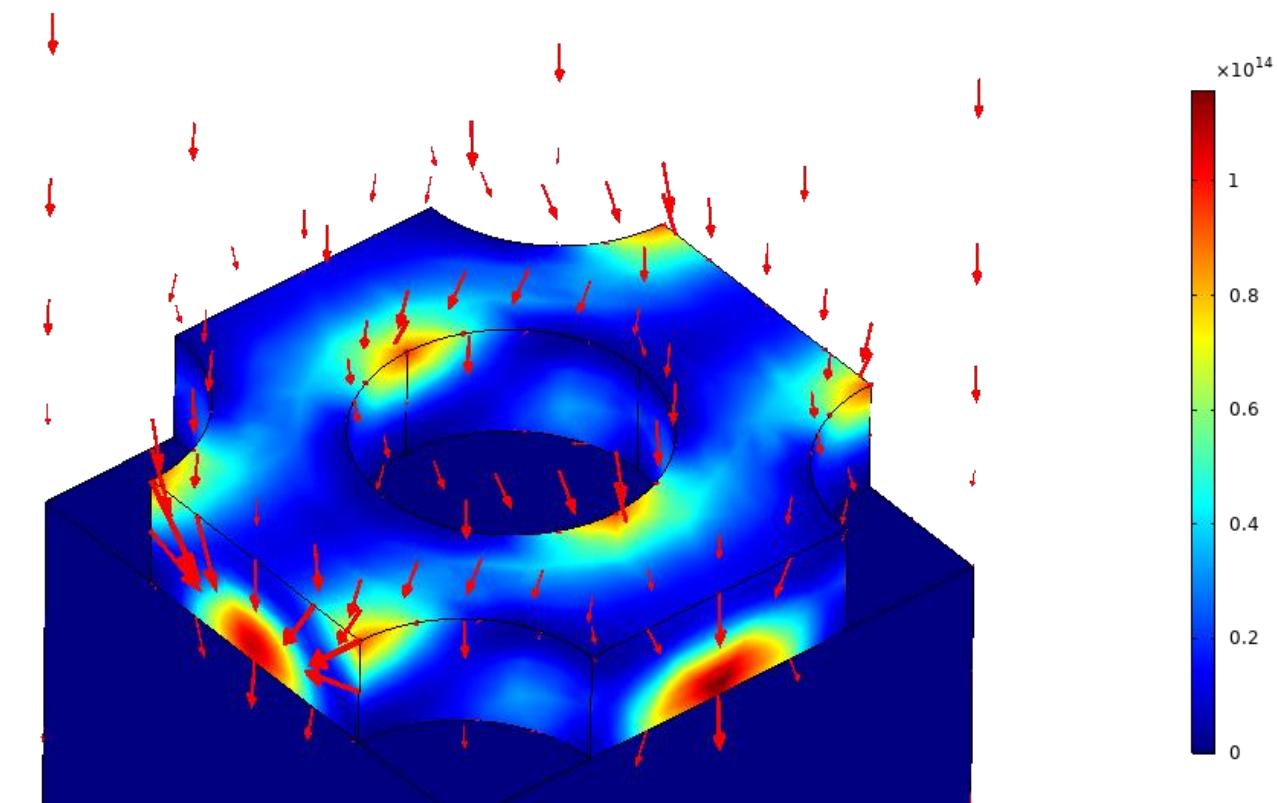
$$dT = 10 \left(1 - \frac{Loss}{Loss_{max}} \right)$$

Training the Topology Optimization Neural Network



Optimized Design Performance

I



- Dual neural networks for topology optimization
 - Performance Neural Network
 - Topology Optimization Neural Network
- Future work
 - Fabrication and testing of (3x) designs
 - Transfer learning: use simple model to pre-train PerfNN and use with more complex, coupled, EM/thermal time domain simulation

The Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

benjasperson.com
jaspers2@illinois.edu

- PerfNN
 - Convolutional NN
 - Four hidden layers + FC output
 - Varying number of feature maps, stride and padding
 - Activation function: ReLU
 - Output: Extinction ratio and dT
 - Loss function: MSE
 - Adam optimizer
- TopOptNN
 - Fully-connected feed-forward NN
 - Five FC hidden layers + Softmax output
 - Includes batch normalization
 - Activation function: Leaky ReLU
 - Output: first column of softmax probability distribution is used as density
 - SIMP-like constraint
 - $\text{Image} = x^p [400, 240]$
 - Loss function: see slide
 - Adam optimizer

Training Data

