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Topology Optimization

• Topology Optimization
• Structural
• Photonics

• Most basic form

• Discretize problem

• Governing equations, boundary conditions

• Finite element setup

• Allocate a given amount of material across the points

• Density function (rho)

• Determine objective (cost) function to minimize

• Extinction ratio and temperature rise targets

• Solve finite element model

• Sensitivity analysis

• Updates

• Repeat

Source: Bendsoe and Sigmund, "Topology Optimization: Theory, Methods, and Applications", 2003



• Challenges
• Requires costly finite element solver calls each 

iteration
• Large optimization problems

• Parallel Computing
• Advanced iterative solvers
• Multi-scale or Multi-Resolution Approaches

• Neural Networks in Topology Optimization [1]
• Supplement
• Replace

• Solver
• Predict density function [2]
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Motivation

[1]Z. Liu, D. Zhu, L. Raju, and W. Cai, “Tackling Photonic Inverse Design with Machine Learning”, Advanced Science, vol. 8, no. 5, p. 2 002 923, Mar. 2021.
[2] A. Chandrasekhar and K. Suresh, “TOuNN: Topology Optimization using Neural Networks”, Structural and Multidisciplinary Optimization, vol. 63, no. 3, pp. 1135–1149, Mar. 2021.

Machine learning for photonic design [1]
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Neural Network Based Topology Optimization

Can we perform traditional topology optimization with a dual neural network approach?



• Artificial Neural Networks (NNs)

• Collection of nodes ("neurons")

• Weights and biases

• Non-linear activation function

• Application examples: image classification, regression

• Utilize Convolutional Neural Networks (CNNs) 

• Heavily used for image recognition

• Train model using labeled data (supervised model)

• Replace solver call after training

• Scanning an image, looking for patterns

• Excels at image/pattern recognition

• Dot product between kernel (filter) and feature combine to 
create feature map

• Utilizing Pytorch, an open source ML package
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Optimization using ML

Source: https://medium.com/analytics-vidhya/everything-you-need-to-know-
about-convolutional-neural-networ ks-cnns-3a82f7aa29c5

Source: Chandrasekhar and Suresh, "TOuNN: Topology Optimization using 
Neural Networks," https://doi.org/10.1007/s00158-020-02748-4



• Application: sensor protection using optical shutter [1]
• Passive
• Thermal activation

• Utilize Vanadium Dioxide (VO2)
• Phase change material

• Figures of merit
• Extinction ratio
• Temperature rise
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Optimization of an Optical Shutter using Machine Learning

[1] M. G. Wood, A. McKay, T. J. Morin, D. K. Serkland, T. S. Luk, S. L. Wolf ley, L. Gastian, J. P. Mudrick, B. Jasperson, and H. T. Johnson, “Optically-triggered optical limiters for short-wavelength 

infrared sensor protection”, in 2021 Conference on Lasers and Electro-Optics (CLEO), 2021, pp. 1–2.
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Design considerations

Can we find a pixelated design that maximizes temperature rise for a given extinction ratio?
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Topology Optimization Flow
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Convert Physical Design to Input Image for PerfNN
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Generating Training Data with COMSOL



M e c h a n i c a l  S c i e n c e  a n d  E n g i n e e r i n g G R A I N G E R  E N G I N E E R I N G

Generating Training Data with COMSOL
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Generating Training Data with COMSOL
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Training the Performance Neural Network

Trained performance:

• Avg abs error

• ~13% Ext. Ratio

• ~5.75% dT

• Maximum difference 

• ~1.44 dB ext. Ratio

• ~1.4 K dT

Average absolute error:



Test data generated with arbitrary cost function shows good performance

• Random "ideal" image selected

• Dummy loss function

• Translate loss into "predicted" Ext Ratio, Temp Rise

Training the Topology Optimization Neural Network
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Training the Topology Optimization Neural Network
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Design 1 vs Design 3 (3x3 shown)



Optimized Design Performance
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Volume plot: Electromagnetic Power Loss Density
Arrows: Directional Energy Flux (Poynting vector)

Poynting vector



• Dual neural networks for topology optimization

• Performance Neural Network

• Topology Optimization Neural Network

• Future work

• Fabrication and testing of (3x) designs

• Transfer learning: use simple model to pre-train PerfNN and use 
with more complex, coupled, EM/thermal time domain simulation
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Conclusion/Future Work
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Neural Network Details

• PerfNN

• Convolutional NN

• Four hidden layers + FC output

• Varying number of feature 
maps, stride and padding

• Activation function: ReLU

• Output: Extinction ratio and dT

• Loss function: MSE

• Adam optimizer

• TopOptNN

• Fully-connected feed-forward NN

• Five FC hidden layers + Softmax
output

• Includes batch normalization

• Activation function: Leaky ReLU

• Output: first column of softmax
probability distribution is used as 
density

• SIMP-like constraint

• Image = xp [400,240]

• Loss function: see slide

• Adam optimizer
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Training Data


