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Magnetized liners develop helical structures

MagLIF: azimuthal magnetic field (B𝜃) compresses liner filled 
with premagnetized (Bz) fusion fuel.

S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)
M.R. Gomez et al., PRL 125, 155002 (2020)

B𝜃 Bz

no preheat, Bz~7 T
T.J. Awe et al., PRL 111, 235005 (2013)
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The origin of the helical mode remains an open research question

From instability theory, k⋅B=0 minimizes the (stabilizing) B field line bending

However, this condition implies a much larger Bz than the expected value:
k⋅B=0 ⇒ Bz=B𝜃tan(𝛼)=700 T ≫ 7 T

no preheat, Bz~7 T
T.J. Awe et al., PRL 111, 235005 (2013)
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The origin of the helical mode remains an open research question

Low-density plasma from MITL (magnetically insulated 
transmission line) sweeps up, compresses, and amplifies Bz at 
liner surface
D. D. Ryutov et al.,  AIP Conf. Proc. 1639 (2014)

Plasma particles from MITL are helically oriented and bombard 
the liner, creating a helical temperature perturbation
A.B. Sefkow, Bull. Am. Phys. Soc. 61, 373 (2016)
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3D simulations demonstrate viability of flux 
compression hypothesis and importance of Hall term 
in modeling this effect
C.E. Seyler, M.R. Martin, and N.D. Hamlin, PoP 25, 062711 (2018)
J.M. Woolstrum et al., PoP 27, 092705 (2020)



Metallic liners are inhomogeneous
Be liner (50 nm rms)

Q: Do defects really matter?

resistive inclusion
(iron)

Void
(10-30 𝜇m)

Characterization of Be rod surface
(E. Harding, K. Tomlinson)



3D defects constitute nonlinear perturbations to current density j

• 𝛿j=jmax-j0 depends on shape, not size

Hydrodynamic analogy with electrical current flow
E.P.  Yu, T.J. Awe, K.R. Cochrane et al., Phys. Plasmas 27, 052703 (2020)

Be liner (50 nm rms)

resistive inclusion
(iron)

Void
(10-30 𝜇m)

Characterization of Be rod surface
(E. Harding, K. Tomlinson)

metal

spherical voidj amplification at 
equator: jmax/j0=1.5

j0



Nonlinear 𝛿j initiates a feedback loop unique to current-driven metal

𝛿j>0⇒𝛿(j2/𝜎)>0⇒𝛿T>0⇒𝛿𝜎<0

j0



Nonlinear 𝛿j initiates a feedback loop unique to current-driven metal

𝛿j>0⇒𝛿(j2/𝜎)>0⇒𝛿T>0⇒𝛿𝜎<0

j0

𝛿𝜎<0

This feedback loop is studied in the electrothermal 
instability (ETI), which describes how small defects can 
grow into larger structures.



Simulations show 3D feedback loop transforms pit into larger structures: 
ETI striation and filament (Bz=0)
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Periodic wedge simulation of aluminum rod + pit, driven by ~1 MA (Mykonos driver)  



Ultrapure aluminum rods driven by ~1 MA current allow us to explore  the 
feedback loop and test simulation predictions (Bz=0)

Al 5N rod (99.999% pure)

machined pits 
(K. Tomlinson, W. Tatum)

j

D=24 𝜇m

1 mm

• Ultrapure metal provides a ”clean” background (no     
native inclusions/voids)
• Machined pits play the role of voids. 
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j redistribution causes overheating at the pit equator

machined pits

j

D=24 𝜇m

3D MHD simulation
t=70 ns, I=0.23 MA
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TOP view
Expansion azimuthally focuses, 
due to shaped charge effect

Periodic wedge simulation
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Pit expands and transforms into a bump

machined pits
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TOP view

j changes qualitatively from flow 
around pit to flow over a bump.

j focuses at the top and bottom of 
the bump, creating hot spots there.

3D MHD simulation
t=85 ns, I=0.36 MA
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Simulations predict distinctive, testable patterns

machined pits
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t=85 ns, I=0.23 MA

Hot spots

3D MHD simulation
t=112 ns, I=0.61 MA
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Experimental validation provides confidence in simulation

machined pits

j

D=24 𝜇m

Hot spots

3D MHD simulation
t=112 ns, I=0.61 MA

40 𝜇m

simulated visible 
emission

t=115 ns, Bz=0

Experiment

T.J. Awe, E. P.  Yu, M.W. Hatch, T. M. Hutchinson, K. Tomlinson, W.D. 
Tatum, K.C. Yates, B.T. Hutsel, and B.S. Bauer, Phys. Plasmas 28, 
072104 (2021)
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Hot spots explode, creating plumes and craters

machined pits
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3D MHD simulation
t=112 ns, I=0.61 MA
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machined pits

j

D=24 𝜇m

3D MHD simulation
t=126 ns, I=0.72 MA

Q: how does this picture change when Bz>0?

Pits seed the ETI filament

40 𝜇m

simulated visible 
emission

t=124 ns, Bz=0

ExperimentSPECT3D
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Motional EMF term in Ohm’s law drives helical asymmetry in ETI

MHD: j=𝜎(E + v×B)

Bz

v

L
ℰ=LvBz

Motional EMF



3D simulation of aluminum rod with resistive inclusion, Bz=15 T

MHD: j=𝜎(E + v×B)
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Induced 𝛿j introduces asymmetry at NE/SW corners

MHD: j=𝜎(E + v×B)
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𝛿j𝜃, j𝜃 add

t=70 ns (0.23 MA)

Bz=15 T



Induced 𝛿j introduces asymmetry at NE/SW corners

𝛿j𝜃/j𝜃 is small (~10%) but 
results in asymmetry
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Asymmetry at NE/SW corners amplifies with time
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Angle of helical perturbation does not agree with k⋅B=0 condition

z
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t=115 ns (0.63 MA)

r=0.514 mm

𝜎=1e5 (𝛺m)-1

Asymmetric Joule heating results in 
asymmetric density perturbation 
with 𝛼~10∘.

This angle is determined by the 
interaction between 𝛿j𝜃 and j𝜃, 
rather than the condition k⋅B=0.

k⋅B=0 predicts a pitch angle
arctan(Bz/B𝜃)=3.5∘

𝛼~10∘



Asymmetric Joule heating will grow density perturbation helically

z
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t=115 ns (0.63 MA)

r=0.514 mm

𝜎=1e5 (𝛺m)-1

This mechanism provides a means 
for helically-oriented striations to 
form.

However, physics in an aluminum 
rod driven by 1 MA will be 
different from beryllium liner 
driven by 20 MA.



Asymmetric heating due to Bz should be experimentally verifiable
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Summary

• Metals are full of defects which seed a feedback loop connecting j and 𝜎 (ETI) 

j



Summary

• Bz creates small 
perturbations in j around the 
defect, driven by 𝛿j=𝜎(v×B), 
which will amplify due to ETI
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Summary

• Simulations predict Bz creates an asymmetric emission pattern.  We plan to 
experimentally verify this prediction on the Mykonos driver.
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Backup: 𝛿j introduces asymmetry at NE/SW corners
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Bz=15 T

j = j0 + �j
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Maximum perturbation in j2 is where 
j0𝜃 is largest i.e., NE/SW corners. 

j when Bz=0



Backup: 3D defects constitute nonlinear perturbations to current density j

• 𝛿j=jmax-j0 depends on shape, not size
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Hydrodynamic analogy with electrical current flow
E.P.  Yu, T.J. Awe, K.R. Cochrane et al., Phys. Plasmas 27, 052703 (2020)
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Backup: Bz scan at t=125 ns, R=5.26e-4
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Backup: horizontal pits on coated, ultrapure Al rods show 
azimuthal correlation

Courtesy Maren Hatch (UNM)
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