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* Neutral atom quantum computation promises us a scalable way of
implementing quantum circuits

* Entangling gates in Neutral atoms are implemented via the Rydberg
states and their fidelities are limited by Rydberg decays.

* Improving these fidelities is an important step on our way to Fault-
tolerant neutral atom quantum computers

* We exploit the Rydberg Electric dipole-dipole interaction energy to
induce entanglement in Neutral atoms
Hint = Vi |rr) (rr|
* In the previous protocols, the Rydberg Laser is modulated to induce
entanglement between two qubits. The LP gate? uses two pulses of
different phases but same duration and detuning.
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Quantum optimal control

* We use Quantum Optimal control algorithms to optimize for phase
gates in Rydberg atoms. Using Gradient Ascent Pulse Engineering
(GRAPE) algorithm, we find the phase waveform that implements a CZ-
like gate3 between two neutral atom qubits.

Phase waveform for CZ gate
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Spin-flip blockade

If a state, say |1), is dressed with the

Rydberg laser, it acquires partial Rydberg character.
This in turn adds a non-linear light-shift to the

two atom dressed state|11), of magnitude J*.
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Microwave controlled gates

* We utilize Spin-flip blockade to create an entangling interaction within the
Hyperfine ground space of a Cesium atom. We dress an auxiliary state CL) to
impart it with partial Rydberg character and use it as the stand-in for the Rydberg
state within the ground manifold.
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Quantum speed limit

* We find that the Minimum time needed to implement a CZ gate in the units of (0,

actually gets faster for smaller blockade strength and saturates to the theoretical
minimum for very weak blockade?.

QSL in units of i/Q QSL in units of ni/V
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Quantum robust control

* We use Quantum robust control methods, similar to Optimal control methods, to
make our gates robust against variations in a particular parameter
Fidelity vs V for Robust pulses Fidelity vs V for Optimal pulses
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Conclusions

* Using dressed states and Spin-flip Blockade, we can implement entangling gates
within the hyperfine regime using a microwave control field. It helps against
Doppler noise, and also gives an extra layer of control via the dressing.

* Using Quantum control techniques, we can implement gates at imperfect and
weak blockade, which makes our gates faster and more efficient against T; decay.

* We can also make our gates Robust against variations in certain parameters which
will be important if we use imperfectly blockaded systems.
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