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Motivation
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Harmonic balance with numerical continuation is a 
widely utilized technique to approximate periodic 
solutions of nonlinear dynamical systems
• Nonlinear normal modes
• Nonlinear forced response curves
• Limit cycle oscillations
• Etc..
Costly computations associated with linear solves 
for each prediction and correction step
• Large system of equations scaled by 2 × 𝑛𝑛 × 𝑁𝑁ℎ

where 𝑛𝑛 is the number of DOF and 𝑁𝑁ℎ is the 
number of harmonics in the Fourier 
approximation

Objective: Utilize Krylov subspace iterative solvers 
to efficiently solve the large linear system along the 
predictor and corrector steps



Review of Multi-Harmonic Balance
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Assume a truncated Fourier series for the periodic response
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After substitution and Galerkin projection onto orthogonal periodic functions

𝐫𝐫 𝐳𝐳,𝜔𝜔 = 𝐀𝐀 𝜔𝜔 𝐳𝐳 + 𝐛𝐛 𝐳𝐳 − 𝐛𝐛𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐛𝐛𝑒𝑒𝑥𝑥𝑥𝑥 = 𝟎𝟎

Unknowns: vector 𝐳𝐳 (collection of Fourier coefficients) and scalar 𝜔𝜔 (fundamental frequency)

See references [1-3] for details and complete derivation of MHB for mechanical systems
[1] T. Detroux, L. Renson, L. Masset, and G. Kerschen, "The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems,“ Computer Methods in Applied Mechanics and Engineering, vol. 296, 

pp. 18-38, 2015.
[2] Y. Colaïtis and A. Batailly, "The harmonic balance method with arc-length continuation in blade-tip/casing contact problems," Journal of Sound and Vibration, vol. 502, 2021. 
[3] M. Krack and J. Gross, Harmonic Balance for Nonlinear Vibration Problems, 1st ed. Springer International Publishing, 2019.

𝐌𝐌𝐱̈𝐱 + 𝐂𝐂𝐱̇𝐱 + 𝐊𝐊𝐊𝐊 + 𝐟𝐟𝑛𝑛𝑛𝑛 𝐱𝐱, 𝐱̇𝐱 = 𝐟𝐟𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐟𝐟𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡

𝐟𝐟𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡 =
𝐜𝐜0
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Starting with the harmonically excited system of equations



Predictor-Corrector Method
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Pseudo-arclength continuation used to trace periodic solution of MHB equations

𝐑𝐑 𝐲𝐲 =
𝐀𝐀 𝜔𝜔 𝐳𝐳 + 𝐛𝐛 𝐳𝐳 − 𝐛𝐛𝑝𝑝𝑝𝑝𝑝𝑝 − −𝐛𝐛𝑒𝑒𝑒𝑒𝑒𝑒

𝐕𝐕T 𝐲𝐲 − 𝐲𝐲 𝒌𝒌=1

Truncating the Taylor series expansion of above equations 
results in a system of equations to solve for corrections 
and predictions

𝐫𝐫𝐳𝐳 𝐲𝐲 𝑘𝑘 𝐫𝐫𝜔𝜔 𝐲𝐲 𝑘𝑘

𝐕𝐕z,(j)
T 𝑉𝑉𝜔𝜔,(j)

∆𝐳𝐳 𝑘𝑘

∆𝜔𝜔 𝑘𝑘 = −𝐑𝐑 𝐲𝐲 𝑘𝑘

𝐲𝐲 = 𝐳𝐳T 𝜔𝜔 T

Requires solution to large-scale, sparse linear system 𝐀𝐀𝐀𝐀 = 𝐛𝐛 that scales as 2 × 𝑛𝑛 × 𝑁𝑁ℎ
• Matrix 𝐀𝐀 has the same form for both correction and prediction solves 

𝐲𝐲(𝑗𝑗)

𝐕𝐕(𝑗𝑗) 𝐲𝐲(𝑗𝑗+1)

Pseudo-arclength continuation

MHB Residual

Tangent hyperplane 
constraint

Corrector

𝐫𝐫𝐳𝐳 𝐲𝐲 𝑗𝑗 𝐫𝐫𝜔𝜔 𝐲𝐲 𝑗𝑗

𝐕𝐕𝐳𝐳, 𝑗𝑗−1
T 𝑉𝑉𝜔𝜔, 𝑗𝑗−1

𝐕𝐕𝐳𝐳, 𝑗𝑗
𝑉𝑉𝜔𝜔, 𝑗𝑗

= 𝟎𝟎
1

Predictor

Same form!
Different RHS



Krylov Subspace Iterative Solvers [4]
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A Krylov subspace iterative method seeks to solve a high-dimensional linear algebraic system 
of equations: 𝐀𝐀𝐀𝐀 = 𝐛𝐛

The Krylov sequence generated based on the initial residual provides linearly independent 
vectors in which a solution to the linear system is sought

𝛫𝛫𝒓𝒓(𝐀𝐀, 𝐫𝐫0) = span(𝐫𝐫0,𝐀𝐀𝐫𝐫0,𝐀𝐀2𝐫𝐫0, … ,𝐀𝐀𝑛𝑛−1𝐫𝐫0)

𝐫𝐫0 = 𝐀𝐀𝐱𝐱0 − 𝐛𝐛

An approximate solution is obtained by minimizing the residual over the subspace and 
iteratively repeated until the solution meets a desired numerical tolerance

Many popular variants available to solve linear systems of equations
• Conjugate Gradient (CG)
• Generalized Minimal Residual Method (GMRES)
• Biconjugate Gradient Stabilized Method (BiCGSTAB)

[4] H. A. Van der Vorst, Iterative Krylov methods for large linear systems (no. 13). Cambridge University Press, 2003.



Subspace Recycling with GCRO-DR
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GCRO method with deflated restarting (GCRO-DR) [5] used to successively solve sequence of 
linear systems that arise from the prediction and correction steps

[5] M. L. Parks, E. De Sturler, G. Mackey, D. D. Johnson, and S. Maiti, "Recycling Krylov subspaces for sequences of linear systems," SIAM Journal on Scientific Computing, vol. 28, no. 5, pp. 1651-
1674, 2006.

𝐀𝐀𝑖𝑖𝐱𝐱𝑖𝑖 = 𝐛𝐛𝑖𝑖 𝑖𝑖 = 1,2, … ,

Utilize a selected subspace to retain between linear systems to improve convergence, 
assuming the linear system changes slowly between iterations, 𝑖𝑖, 𝑖𝑖 + 1, etc..
• No assumptions about the vector 𝐛𝐛𝑖𝑖

GCRO-DR( �𝑚𝑚,�𝑘𝑘) utilizes �𝑘𝑘 harmonic Ritz vectors corresponding with smallest magnitude values to 
initialize the subspace for the iterative solver
• �𝑚𝑚 is the maximum size of the subspace within the solver
• Details and pseudo-code provided in [1] 



Delayed Frequency Preconditioner
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Reuse a preconditioner computed at a point along the solution branch – delayed frequency 
preconditioner [6]
• Avoid costly refactorization at each solution

Monitor performance of preconditioner based on the number of iterations in the iterative 
solver
• If # iterations exceeds a threshold (based on % increase in iterations from last update), 

Then update the preconditioner (details in [7])

Zero fill-in Incomplete LU (iLU) factorization used as preconditioner iLU(0)
• Supported in MATLAB

[6] G. Jenovencio, A. Sivasankar, Z. Saeed, and D. Rixen, "A Delayed Frequency Preconditioner Approach for Speeding-Up Frequency Response Computations of Structural Components," in XI International 
Conference on Structural Dynamics, 2020. 
[7] R.J. Kuether and A. Steyer, “Large-Scale Harmonic Balance Simulations with Krylov Subspace and Preconditioner Recycling”, (in preparation).



Numerical Example I
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Coupled shaker-structure model of mock 
pylon subcomponent mounted to a stiff 
fixture
Frictionless contact between hanging strip 
and mounting blocks of pylon
• Hardening type nonlinearity at 

sufficient vibration amplitude
Hurty/Craig-Bampton model developed to 
reduce structural model degrees-of-
freedom
• 50 fixed-interface modes
• 189 boundary DOF (input locations + 

nonlinear DOF)
Driven with a harmonic excitation at a 
constant DAQ voltage and continuing 
along frequency
• Excitation around 1st elastic mode 

(pylon bending)



Numerical Example I Results
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Examined solver performance for iterative solver with subspace recycling (i.e. GCRO-DR) and without recycling (i.e. 
GMRES)
• Total Cost = Iterative Solver + Preconditioner Evaluation

Subspace recycling method less sensitive to maximum size of subspace and number of eigenvectors to recycle 
between linear systems
• Lower values of �𝑚𝑚 and �𝑘𝑘 can cause the solver to stall

Favorable speedups achieved for GCRO-DR relative to direct solver cost (4.2x, 6.2x, 5.9x)
• GMRES speedups (3.0x, 5.1x, 2.6x)

All solvers achieve the same relative residual for the solution along the NLFR branch (𝜀𝜀𝑅𝑅 = 10−6)

𝑁𝑁ℎ �𝑚𝑚 �𝑘𝑘
20 150 75
40 150 75
80 200 50

GCRO-DR solver settings

*Solver Cost ≈ Total Cost



Numerical Example I Results
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Subspace recycling reduced the number of 
iterations within the iterative solver, 
leading to improvements in the solver cost
Overhead costs (not reported here) 
associated with generation of harmonic 
Ritz vectors used for subspace recycling
GCRO-DR works favorably with iLU(0) 
preconditioner, which is inexpensive to 
compute GCRO-DR

GMRES

𝑁𝑁ℎ GMRES GCRO-DR

20 126,261 47,840

40 163,278 76,313

80 750,248 362,368

Total number of iterations

(*) represent solution at which 
iLU(0) factorization occurs



Numerical Example II
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Bolted C-Beam assembly with node-to-
node frictional contact elements at bolted 
interface
• 1,220 Jenkins elements
Hurty/Craig-Bampton model developed to 
reduce structural model degrees-of-
freedom
• 25 fixed-interface modes
• 3,675 boundary DOF (input locations + 

nonlinear DOF)
Driven with a harmonic excitation at a 
constant force level (20 N) and continuing 
along frequency
• Excitation around 2nd elastic mode (in-

phase bending)



Numerical Example II Results
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Examined solver performance for iterative solver with subspace recycling (i.e. GCRO-DR) and without recycling (i.e. 
GMRES)
Subspace recycling method more sensitive to maximum size of subspace and number of eigenvectors to recycle 
between linear systems
• Needed to increase �𝑚𝑚 and �𝑘𝑘 to avoid stalling of the solver
Favorable speedups achieved for GCRO-DR relative to direct solver cost (1.6x, 2.4x, 3.3x)
• “Slowdown” observed for the GMRES solver relative to direct solver (0.33x, 0.47x, 0.73x)
All solvers achieve the same relative residual for the solution along the NLFR branch (𝜀𝜀𝑅𝑅 = 10−6)

𝑁𝑁ℎ �𝑚𝑚 �𝑘𝑘
1 100 50
3 200 100
5 400 200

GCRO-DR solver settings

*Solver Cost ≈ Total Cost



Numerical Example II Results
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Subspace recycling significantly 
reduced the number of iterations 
within the iterative solver, leading to 
improvements in the solver cost
• GCRO-DR performed better than 

direct solver, where GMRES did not
Subspace recycling works favorably 
with iLU(0) preconditioner, which is 
relatively inexpensive to compute

(*) represent solution at which 
iLU(0) factorization occurs

GCRO-DR

GMRES

𝑁𝑁ℎ GMRES GCRO-DR

1 151,535 19,634

3 305,963 33,360

5 464,212 59,850

Total number of iterations



Conclusion
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Implemented an iterative solver (GCRO-DR) that recycles Krylov subspace between solution 
of linear systems

Combined subspace recycling method with delayed frequency preconditioner to avoid costly 
refactorization of the preconditioner 

Demonstrated solver on two numerical examples with frictionless and frictional contact 
nonlinearities

Zero fill-in iLU(0) preconditioner inexpensive to compute; Krylov subspace recycling reduce 
the number of solver iterations leading to faster speedups
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