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P Motivation

Harmonic balance with numerical continuation is a
widely utilized technique to approximate periodic
solutions of nonlinear dynamical systems

« Nonlinear normal modes

* Nonlinear forced response curves
« Limit cycle oscillations

- Etc..

Costly computations associated with linear solves
for each prediction and correction step

- Large system of equations scaled by 2 x n x Ny,
where n is the number of DOF and Ny, is the
number of harmonics in the Fourier
approximation

Objective: Utilize Krylov subspace iterative solvers
to efficiently solve the large linear system along the
predictor and corrector steps
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74 Review of Multi-Harmonic Balance
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7 * Starting with the harmonically excited system of equations

MX + Cx + Kx + f,,;(X,X) = f,,.0 + for (£)

Assume a truncated Fourier series for the periodic response

t) = % ﬁ[ X sin(kwt) + c¥cos(kwt)] f (X X) = cill+ z[s”l sin(kwt) + ci'cos(kwt)]
X \/_ Sk SIN(KW Ck COS(KW ni\X, - \/E 4 k k
]
f,..(t) = \/—O_ + z [sk sin(kwt) + ¢, cos(kwt)]

After substitution and Galerkin projection onto orthogonal periodic functions

r(z,w) = A(w)z + b(z) - byre = Doyt =0

Unknowns: vector z (collection of Fourier coefficients) and scalar w (fundamental frequency)

See references [1-3] for details and complete derivation of MHB for mechanical systems

[11T. Detroux, L. Renson, L. Masset, and G. Kerschen, "The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems,” Computer Methods in Applied Mechanics and Engineering, vol. 296,
pp. 18-38, 2015.

[2]Y. Colaitis and A. Batailly, "The harmonic balance method with arc-length continuation in blade-tip/casing contact problems," Journal of Sound and Vibration, vol. 502, 2021.

[3]1 M. Krack and J. Gross, Harmonic Balance for Nonlinear Vibration Problems, 1st ed. Springer International Publishing, 2019.




74 Predictor-Corrector Method
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/ Pseudo-arclength continuation used to trace periodic solution of MHB equations
R(y) = [A(w)z +b(z) —byre — —bey ] «— MHBResidual v, \\
B T(y — yk=1 «—— Tangent hyperplane J .
v (y y ) constraint YG+1)
y=I[zT o]’

Truncating the Taylor series expansion of above equations
results in a system of equations to solve for corrections
and predictions

Pseudo-arclength continuation

Same form!

Different RHS l
(y(k)) r (y(k)) [Az(k) R(y®) rZ(y(J)) rw(y(J)) [ Z(])] [0]
Voiy  Vei |lae® Vo Vaig-n | Voo
Corrector Predictor

Requires solution to large-scale, sparse linear system Ax = b that scales as 2 x n X Ny,
« Matrix A has the same form for both correction and prediction solves




P Krylov Subspace Iterative Solvers [4]

A Krylov subspace iterative method seeks to solve a high-dimensional linear algebraic system
of equations: Ax = b

The Krylov sequence generated based on the initial residual provides linearly independent
vectors in which a solution to the linear system is sought

Kr(A, ro) = Span(l‘o, AI‘O, AZI‘O, ,An_lro)
1‘0 = AXO - b

An approximate solution is obtained by minimizing the residual over the subspace and
iteratively repeated until the solution meets a desired numerical tolerance

Many popular variants available to solve linear systems of equations
- Conjugate Gradient (CG)

« Generalized Minimal Residual Method (GMRES)

« Biconjugate Gradient Stabilized Method (BiCGSTAB)

[4] H. A. Van der Vorst, lterative Krylov methods for large linear systems (no. 13). Cambridge University Press, 2003.



P Subspace Recycling with GCRO-DR

GCRO method with deflated restarting (GCRO-DR) [5] used to successively solve sequence of
linear systems that arise from the prediction and correction steps

Alx! = bt i=1,2, ..,

Utilize a selected subspace to retain between linear systems to improve convergence,
assuming the linear system changes slowly between iterations, i, i + 1, etc..

- No assumptions about the vector b

GCRO-DR(#,k) utilizes k harmonic Ritz vectors corresponding with smallest magnitude values to
initialize the subspace for the iterative solver

« mis the maximum size of the subspace within the solver
« Details and pseudo-code provided in [1]

[5] M. L. Parks, E. De Sturler, G. Mackey, D. D. Johnson, and S. Maiti, "Recycling Krylov subspaces for sequences of linear systems," SIAM Journal on Scientific Computing, vol. 28, no. 5, pp. 1651- ‘
1674, 2006.



P Delayed Frequency Preconditioner

Reuse a preconditioner computed at a point along the solution branch - delayed frequency
preconditioner [6]

 Avoid costly refactorization at each solution

Monitor performance of preconditioner based on the number of iterations in the iterative
solver

« If # iterations exceeds a threshold (based on % increase in iterations from last update),
Then update the preconditioner (details in [7])

Zero fill-in Incomplete LU (iLU) factorization used as preconditioner iLU(0)
« Supported in MATLAB

[6] G. Jenovencio, A. Sivasankar, Z. Saeed, and D. Rixen, "A Delayed Frequency Preconditioner Approach for Speeding-Up Frequency Response Computations of Structural Components," in X1 International

Conference on Structural Dynamics, 2020.
[7] R.J. Kuether and A. Steyer, “Large-Scale Harmonic Balance Simulations with Krylov Subspace and Preconditioner Recycling”, (in preparation).




P/ Numerical Example |
/o

N
4 Coupled shaker-structure model of mock e
ylon subcomponent mounted to a stiff . ke
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Numerical Example | Results

. (Esxl\%nEig)ed solver performance for iterative solver with subspace recycling (i.e. GCRO-DR) and without recycling (i.e.

Total Cost = Iterative Solver + Preconditioner Evaluation

Subspace recycling method less sensitive to maximum size of subspace and number of eigenvectors to recycle
between linear systems

Lower values of m and k can cause the solver to stall
Favorable speedups achieved for GCRO-DR relative to direct solver cost (4.2x, 6.2X%, 5.9x)
GMRES speedups (3.0x, 5.1x, 2.6x)
All solvers achieve the same relative residual for the solution along the NLFR branch (s = 107°)

Cost, hours
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—S—iLU(0) GMRES - Preconditioner
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—#%— iLU(0) GCRO-DR - Solver
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P Numerical Example | Results

Subspace recycling reduced the number of
iterations within the iterative solver,
leading to improvements in the solver cost

GMRES

[¥8)
W
jes)
=1

Overhead costs (not reported here)
associated with generation of harmonic
Ritz vectors used for subspace recycling

Average Iterations per Solution

GCRO-DR works favorably with iLU(0) T T Y
preconditioner, which is inexpensive to
compute GCRO-DR
§ 1400 ‘ [ . .
Z 1200 | e
Total number of iterations g 1000r Ny~
2 800
GMRES GCRO-DR < oo
= 400 F
20 126,26 47,840 % 200! 7
40 163,278 76,313 TN e w ww mm
80 750,248 362,368 (*) represent solution at which

iLU(O) factorization occurs




P Numerical Example Il —
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Bolted C-Beam assembly with node-to-
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« 3,675 boundary DOF (input locations +
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/ (Eaxl\ﬁarEig)ed solver performance for iterative solver with subspace recycling (i.e. GCRO-DR) and without recycling (i.e.

Subspace recycling method more sensitive to maximum size of subspace and number of eigenvectors to recycle
between linear systems

- Needed to increase i and k to avoid stalling of the solver

Favorable speedups achieved for GCRO-DR relative to direct solver cost (1.6x, 2.4x, 3.3x)

« “Slowdown"” observed for the GMRES solver relative to direct solver (0.33x, 0.47x, 0.73x)

All solvers achieve the same relative residual for the solution along the NLFR branch (g = 107°)
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- | —©&— iLU(0) GMRES - Preconditi :
RN T - GCRO-DR solver settings
(6 —©—ILU(0) GMRES - Total
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P Numerical Example Il Results

Subspace recycling significantly
reduced the number of iterations
within the iterative solver, leading to
improvements in the solver cost

*  GCRO-DR performed better than
direct solver, where GMRES did not

Subspace recycling works favorably
with iLU(O) preconditioner, which is
relatively inexpensive to compute

Total number of iterations

GMRES GCRO-DR

1 151,535 19,634
3 305,963 33,360
5 464,212 59,850
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(*) represent solution at which
iLU(O) factorization occurs




P Conclusion

Implemented an iterative solver (GCRO-DR) that recycles Krylov subspace between solution
of linear systems

Combined subspace recycling method with delayed frequency preconditioner to avoid costly
refactorization of the preconditioner

Demonstrated solver on two numerical examples with frictionless and frictional contact
nonlinearities

Zero fill-in iLU(0) preconditioner inexpensive to compute; Krylov subspace recycling reduce
the number of solver iterations leading to faster speedups
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