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Motivation

/ Numerical time integration problematic for solving
transient response of nonlinear mechanical systems

« Computational cost

- Serial solver (next solution depends on the prior)
« Error accumulation over time

- Temporal discretization and convergence

Many options available to address some of these
limitations

- Parallel-in-time integration schemes
- Time-spectral methods

51 | e Transient VP []

* Reduced order modeling
- Etc..
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)

Objective: explore efficacy of a nonlinear superposition | i
framework based on nonlinear normal modes to efficiently ' ' -
solve initial value problems for second order ODEs 0 0.05 0.1 0.15 0.2




P Problem Statement

Solve the initial value problem

X1 ode45
X2 ode45

MX+KX+fnl(X) =0

X(ty) = Xq

Displacement
=

X(tp) = Vo

Time, s

Benchmark against the built-in 4t"/5th order Runge-Kutta explicit solver in Matlab




/ Review of Linear Superposition

Mx+Kx=0 K=K+— X(tg) = X X(to) = Vo

X=Xeq

The principle of superposition for a linear(ized) second order ODE is defined as

X(t) = aquy(t) + azuy (B)+..+ @y (t) Superposition “function”

u;(t) = ‘I’jSin(‘th - 91‘) Linearized modal solution

Components of the superposition solution

a;, 0; Determined by the initial conditions x4 and v,

b, w; Real eigenvector and eigenvalue determined by the eigensolution with M and K

Superposition is a functional relationship between a finite number of modal solutions




P Nonlinear Superposition

MX+Kx+f,;(x)=0 X(tg) = X X(to) = Vo

Proposition: a nonlinear superposition principle for a nonlinear second order ODE is defined
using a connecting function [1,2]

X(t) =D+ z Apug(t) + By (t) + Z u (0)1C iy (8) Connecting function
j=1,k,l=1
c.’
u;(t) = % + Z sz’sin(na)jt) -+ c,l;’cos(na)jt) Nonlinear normal mode solution

Components of the connecting function

Ay, By, Ciy 1, D Determined by the initial conditions x, and v, and governing equations

Nonlinear normal mode solutions computed from the governing equations

s.,C
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[1] Spijker, M., “Superposition in linear and nonlinear ordinary differential equations,” . Math. Anal. and Appl, 1970.
[2] Ardeh, H, Allen, M.S., “On connecting functions for a class of nonlinear oscillatory systems (a quest for an alternative for superposition),” 17th US National Congress on Theoretical and App“
Mechanics 2014.




P Nonlinear Normal Modes

Nonlinear normal mode defined as “a
(nonnecessarily synchronous) periodic motion of
the conservative system” [3, 4]

. . . 0l
Several numerical and analytical techniques 10
available to obtain the NNM solutions

- Harmonic balance, perturbation methods,
shooting, etc..

Energy

Frequency-energy plots concisely represent the
family of periodic solutions initiated at a
linearized eigensolution at low energy

o | - 10 |
Determine which NNM?* solution to utilize

within the connecting function

0.9 1 1.1 1.2
s, (57, ¢/ (E;), ; (E)) Normalized Frequency

*Assume that E; uniquely defines a periodic NNM solution along the branch (i.e. assume no internal resonances),

topic for future investigation

[3] A. F. Vakakis, "Non-linear normal modes (NNMs) and their applications in vibration theory: an overview," Mechanical Systems and Signal Processing, 1997.
[4] G. Kerschen, M. Peeters, J. C. Golinval, and A. F. Vakakis, "Nonlinear normal modes. Part I. A useful framework for the structural dynamicist," Mechanical Systems and Signal Processing, 2009.
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Fitting Connecting Functions

1

X(t) = D+zAkuk(t)+Bkuk(t)+ 2 u, ()7C; 5,1, (1)
j=1,k,l=

Following the approach by [2], the CF matrices are reduced to
Ak = Clkl Bk = bkl Cj,k,l = Cjkll

Define residual function that satisfies both the initial conditions and governing equations
over a defined period between t, and t,

X(t = 0) —ug}/|uy
R(a,b,C,D,E) = { {x(t = 0) — vo}/ v, r(t,) = :
l‘(tp) ftop{Ki + fnl (i )}T{Ki + fnl(i )}

fti)p{Mi‘é + K&+ £, (% )}T{Mi‘é + K& + £,;(%)}

Key Question: Can we fit a CF where m << N to achieve dimension reduction for the IVP?

[2] Ardeh, H, Allen, M.S., “On connecting functions for a class of nonlinear oscillatory systems (a quest for an alternative for superposition),” 17th US National Congress on Theoretical and Applied Mechanics 2014. ‘



P Computational Approach

Many methods available to solve the system of equations (see [2])

- Newton-Raphson

« Continuation methods

- Etc..

Three step approach based on nonlinear solver (fsolve in Matlab [5,6])

1. For the prescribed initial conditions, calculate the total kinetic and potential energy in the
system. Fix NNMs solutions for each branch at E; = Ej¢,. Fit linear CF (i.e. fix Cj ;. ; = 0).

2. Using initial guess from Step 1, repeat linear CF solve by allowing NNM energy, Ej, to be a
variable.

3. Using initial guess from Step 2, fit the nonlinear CF and still allowing NNM energy, E;, to
be a variable.

[5] Levenberg, K., “A Method for the Solution of Certain Problems in Least Squares,” Quart. Appl. Math., 1944.

[2] Ardeh, H, Allen, M.S., On connecting functions for a class of nonlinear oscillatory systems (a quest for an alternative for superposition), 17th US National Congress on Theoretical and Applied Mechanics 2014.
[6] Marquardt, D., “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” SIAM J. Appl. Math., 1963. ‘




2DOF Example

Two degree-of-freedom (DOF) example
with a cubic spring nonlinearity

No dimension reduction (m = N)

Initial conditions:

0 (b vo= (3

x1(t) x(t)
: A
/ N\
2 N\
nl
m 1
k 1
K, 0.5
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2DOF Results

7 ldentified NNM solutions do not necessarily occur at the energy of the initial conditions
Relative error provides an accuracy metric of connecting function (CF)

- r(t, =5) = 0.0159 used for identification of CF coefficients
- r(t, =500) = 0.0201 used for validation over long time history

Displacement

0.9 1 1.1 12 1.5
Normalized Frequency, Hz
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/" Nonlinear beam example

/ Cantilever beam example with a cubic spring
nonlinearity

- Structural steel material properties
« 19 Euler-Bernoulli beam elements
With dimension reduction (m < N)

« N=57

e m=25

Initial conditions based on the response after
the application of a haversine impulse with a
pulse width of 2 ms near the midpoint

. Presenting(results from a 50N impulse,
which excites system in the nonlinear
regime

Linearized natural frequencies of beam

fn(Hz) 2366 1483 4152  313.7 1345

Displacement, mm

Velocity, mm/s

Force, N

o

0.7 m

0:5

155 2
%1073

0.5

1.5 ‘2)\
><'IO'3

_

0.5

Time, s

1.5 2
%1073

ICs for
transient
VP (at all
DOF)




/ 6 x10™ . CF
—- = = -ode45
Nonlinear beam results il =
-~ 2_

Comparlson of transverse transient response (displacement and
velocity) at beam tip location

E, is below E;., all other NNMs near E;.

Displacement, m
o

. . . 2t
Relative error of connecting function
-+ r(t, = 0.1) = 0.0184 used for identification of CF coefficients 4
-+ r(t, = 1.0) = 0.0188 used for validation over long time history “ | | |
1 0 0.05 0.1 0.15 0.2
107 Time, s
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/ Example of windowed response
P Nonlinear beam results 5><1o-4p, o "

The spectrum of the transient response plotted by applying a Hanning
window to the signal integrated to 1.0 sec, followed by FFT

Reveals dominant frequency content at NNM fundamental frequencies

Displacement, m
o

and 34 harmonic of NNM 1 M w “ w
Other peaks not captured with CF due to fit error of C; . ; terms w w v H w
*  Cjx, = 0 for the resultant nonlinear CF fit, topic of future 5 - J - '
investigation 0 0.2 0.4- 0.6 0.8 1
Time, s
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P Conclusion

Developed a numerical framework to perform nonlinear superposition with nonlinear normal
modes using connecting function theory

 Solution to the initial value problem
Applied the methodology to a nonlinear cantilever beam with a cubic spring nonlinearity

Explored the connecting function framework when using a subset of nonlinear normal
modes for the modal solution basis

« Form of dimension reduction analogous to modal superposition

Observed good accuracy of the connecting function for transient response when compared
to traditional time integrated solutions
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