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We Taylor expand the noisy expectation value around a

noiseless estimate to order 𝑛. If the unmitigated circuit

has an error rate 𝜆 = 1.0, then 𝑛 noisy measurements

with noise scaled by 𝑐𝑖𝜆 > 1.0 are fit to a polynomial of

order 𝑛 − 1. The mitigated energy estimate corresponds

to 𝜆 = 0 on this curve, with reduced error 𝒪 𝜆𝑛+1 .
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1. Richardson Extrapolation

5. Conclusions

2. Time Stretching Methods

We increase the error in our circuits by stretching the duration

of our control pulses [3, 4]. Simulations varied the duration by

𝑐𝑖 = 1.0, 1.25, 1.5, 2.0 using 2000 samples per measurement.

Figure 2 – Simulation results of time-stretch

extrapolation. Increasing gate duration has little effect. It

is difficult to differentiate the noisy energy estimates.

Figure 3 – Experimental results of time-stretch

extrapolation. We increased the duration of only our two

qubit Mølmer–Sørensen gates by 𝑐𝑖 = 0.5 …1.5 . The

time-stretched energy curves are too close together to

differentiate in the presence of sampling noise.

3. Gate-Based Simulation
Another noise scaling method is to discretely insert gates [5, 6,

7]. This targets control errors in our circuit, rather than the

minimal decoherence our qubits experience. We tested five

different methods: inserting the identity 𝑀𝑆 𝑀𝑆−1 into our circuit

before and/or after our parameterized gate, trotterizing our gate

(
𝑛
𝑀𝑆)𝑛 and inserting the identity 4x (𝑀𝑆(

𝜋

2
))4.

Figure 4 – Simulation error comparison with and without

extrapolation. Four noisy energy curves were estimated for

twenty parameters between −1.0, 1.0 . The noisy

estimates measured at the minimum parameter for the

bare circuit 𝑐𝑖 = 1.0 were extrapolated. All methods show

improvement. We used 2000 samples per measurement.

Extrapolation experiments on the hardware show mixed

results. We tested the effects of the above noise scaling

methods except for gate trotterization, varying the order 𝑛 of

our extrapolation. These results are uncertain with our limited

sampling budget as shown in Figure 6.

Noisy Intermediate Scale Quantum (NISQ) devices are hindered by large error rates, particularly for multi-qubit

gates. Richardson Extrapolation can improve device accuracy given more samples. We studied its effect on

estimates of the ground state energy of small diatomic molecules. We simulated extrapolation using our noise model

IonSim, which emulates the variation in experimental control parameters. Experiments were carried out on the

Quantum Scientific Computing Open User Testbed (QSCOUT) device [1, 2].

Figure 1 – Schematic of Richardson Extrapolation. Noisy

estimates are extrapolated using a polynomial of order 𝑛.

Figure 5 – Experimental error comparison with and

without extrapolation. Methods are the same as in

simulation results. Extrapolated estimates were

compared with order 𝑛 = 2, 3, 4. Some methods show

improvement over no extrapolation, some do not.

4. Gate-Based Experiment

Figure 6 – Experimental results for inserting identity

𝑀𝑆 𝑀𝑆−1 before and after our parameterized gate

(MS_sandwich). The extrapolated energy curves for 𝑛 =
2, 3, 4 estimates are wildly inaccurate for most parameter

values. Errors happen to be improved for the minimum

parameter of the base circuit.

Richardson Extrapolation can work for a trapped-ion

device in the right circumstances. We find time-

stretching gates does not increase the circuit noise

enough for extrapolation, as our qubits do not

experience much decoherence.

Discrete gate-based methods increase the noise better.

However, they require many samples per measurement

and are susceptible to coherent errors. Such errors are

not conducive to extrapolation.

Further data with more samples is needed, and the

addition of other error mitigation techniques such as

Randomized Compiling [8] may improve results.
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