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Abstract—This paper studies a novel mixed-integer linear
programming (MILP) formulation on the pre-blackout placement
of mobile energy storage (MES) for black-start (BS) restoration
of a transmission network. The formulation is a stochastic
program that, rather than re-energization over a multi-interval
horizon, for each scenario considers the final energization states
of generators in a steady-state power flow. If a scenario of the
event inducing the blackout cuts off an island from the network,
the island is re-energized following the blackout only if it contains
a generator with either BS capability or a pre-placed MES.
Besides the model, this paper also explores the novel analytical
concept of a discretized expected value realization.

Index Terms—Energy storage, power outages, power system
restoration, standby generators.

NOMENCLATURE

Sets
S Set of scenarios
I / L / G Set of buses/branches/generators
IG Set of generator buses
Pi1i2 Set of paths from bus i1 to bus i2
Lp Set of branches in path p
Gi Set of generators at bus i
Parameters
M Large positive number for big-M constraints
E Allowance for pre-blackout MES placement
θ/θ Max./min. limit for angle at any bus [rad]
Υs Probability of scenario s
Os

i /O
s
l /O

s
g 1 if bus i / branch l / generator g is disabled

in scenario s; o.w. 0
F l/F g Capacity of branch l / generator g [MW]
V oLLi Value of lost load at bus i [$/MWh]
Di Load demand at bus i [MW]
Bl Susceptance of branch l [pu]
Cg 1 if generator g is BS-capable; o.w. 0
Variables
ei 1 if an MES is placed at bus i; o.w. 0
cg 1 if generator g can start without power from

grid; o.w. 0
ns
i/n

s
g 1 if bus i / generator g can originate BS

restoration in scenario s; o.w. 0
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Ψs
i1i2

/Ψs
il 1 if bus i1 has connectivity to bus i2 / branch

l in scenario s; o.w. 0
vsi1i2/v

s
il/v

s
ig 1 if bus i1 can re-energize bus i2 / branch l /

generator g in scenario s; o.w. 0
rsi /r

s
l /r

s
g 1 if bus i / branch l / generator g is re-

energized in scenario s; o.w. 0
θsi /h

s
i Voltage angle [rad] / load shed [MW] at bus

i in scenario s
fs
l /f

s
g Flow in branch l / output of generator g in

scenario s [MW]
Other notation
o(l)/d(l) Origin/destination bus of branch l
i(g) Bus hosting generator g

I. INTRODUCTION

Black-start (BS) generators, which can restart to originate
grid re-energization without an external power source, are
instrumental to rapid restoration of a transmission network
following a complete blackout [1]. Furthermore, utility-scale
energy storage (ES) has demonstrated the ability to “black-
start” a generator by supplying its cranking power [2]. This
paper thus examines the optimal pre-blackout placement of
utility-scale mobile energy storage (MES) for BS restoration.

Previous works (e.g., [3]–[5]) propose mixed-integer lin-
ear programming (MILP) models on optimal BS restoration.
While these models account for a multi-interval horizon, the
model in [6] assesses still-intact conducting paths to directly
consider the final energization states of generators in a steady-
state power flow. Another recently created model [7] integrates
MES into BS restoration, yet like others the model supposes
a horizon requiring costly integer variables for each interval.

This paper makes two novel contributions.

(I) A stochastic programming, MILP model is developed for
pre-blackout placement of MES for BS restoration. To
focus on benefits of pre-placement, the steady-state power
flow of the model does not account for relocation or other
activity of MES over a multi-interval horizon. Instead
of relying on costly integer variables as in [6], the con-
straints that assess conducting paths in the model employ
McCormick relaxation to keep variables continuous.

(II) The analytical concept of a discretized expected value
realization is devised to provide a realizable surrogate for
the expected value of an integer-valued random parameter
vector in the context of stochastic programming.
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II. MATHEMATICAL OPTIMIZATION MODEL

This section presents the stochastic program on optimal pre-
blackout placement of MES for steady-state grid operation
after BS restoration. The power and energy ratings of each
MES are assumed sufficient to supply the start-up sequence
of any generator. For further simplification, the model contains
a DC power flow to consider only real, not complex, power.
A. Formulation
The stochastic program developed for optimal pre-blackout
placement of MES for BS restoration is

min
X
s∈S

Υs
X
i∈I

V oLLih
s
i (1)

subject toX
i∈IG

ei ≤ E, (2)

1− cg = (1− Cg)(1− ei(g)) ∀g ∈ G, (3)
ns
g = (1−Os

g)cg ∀s ∈ S,∀g ∈ G, (4)

1− ns
i =

Y
g∈Gi

(1− ns
g) ∀s ∈ S,∀i ∈ IG, (5)

vsii = (1−Os
i )n

s
i ∀s ∈ S,∀i ∈ IG, (6)

vsi1i2 = Ψs
i1i2v

s
i1i1 ∀s ∈ S,∀i1 ∈ IG,∀i2 ∈ I|i2 ̸= i1, (7)

vsil = Ψs
ilv

s
ii ∀s ∈ S,∀i ∈ IG,∀l ∈ L, (8)

vsi1g = (1−Os
g)v

s
i1i2

∀s ∈ S,∀i1 ∈ IG,∀i2 ∈ IG|i2 ̸= i1,∀g ∈ Gi2 , (9)
Ψs

ii = 1 ∀s ∈ S, ∀i ∈ IG, (10)

1−Ψs
i1i2 =

Y
p∈Pi1i2

�
1− (1−Os

i2)
Y
l∈Lp

(1−Os
l )
�

∀s ∈ S,∀i1 ∈ IG,∀i2 ∈ I|i2 ̸= i1, (11)
Ψs

il = (1−Os
l )Ψ

s
i,o(l)Ψ

s
i,d(l) ∀s ∈ S,∀i ∈ IG,∀l ∈ L, (12)

1− rsi1 =
Y

i2∈IG

(1− vsi2i1) ∀s ∈ S,∀i1 ∈ I, (13)

1− rsl =
Y
i∈IG

(1− vsil) ∀s ∈ S,∀l ∈ L, (14)

1− rsg = (1− ns
g)

Y
i∈IG

(1− vsig) ∀s ∈ S,∀g ∈ G, (15)

fs
l ≤ −Bl(θ

s
o(l) − θsd(l)) +M(1− rsl ) ∀s ∈ S,∀l ∈ L, (16)

fs
l +M(1− rsl ) ≥ −Bl(θ

s
o(l) − θsd(l)) ∀s ∈ S,∀l ∈ L, (17)

− F lr
s
l ≤ fs

l ≤ F lr
s
l ∀s ∈ S,∀l ∈ L, (18)

θ ≤ θsi ≤ θ ∀s ∈ S,∀i ∈ I, (19)
(1− rsi )Di ≤ hs

i ≤ Di ∀s ∈ S,∀i ∈ I, (20)

0 ≤ fs
g ≤ F gr

s
g ∀s ∈ S,∀g ∈ G, (21)X

l∈L|o(l)=i

fs
l −

X
l∈L|d(l)=i

fs
l =

X
g∈Gi

fs
g − (Di − hs

i ) ∀s ∈ S,∀i ∈ I. (22)

The objective (1) minimizes the expected cost, in $/h, of
unserved load. Assuming that MES does not relocate following
the blackout, the expected cost is per unit of time after islands
have already re-energized to the greatest extent possible.

Constraint (2) limits the total number of MES resources
placed, before the blackout, at generator buses throughout the
transmission system. Constraint (3) reflects that a generator
can start without power from the grid if and only if (i) the
generator is BS-capable or (ii) an MES resource is placed
at the bus of the generator. Constraint (4) indicates that a
generator can originate BS restoration if and only if (i) the
generator is not disabled and (ii) the generator can start without
power from the grid. Constraint (5) reflects that a generator
bus can originate BS restoration if and only if the bus hosts
at least one generator that can originate BS restoration.

Without delving into details, constraints (6), (7), (8), and
(9) concern whether a generator bus can re-energize itself,
another bus (not necessarily a generator bus), a branch, and
a generator, respectively, with connectivity as a common re-
quirement for re-energization. Constraints (10), (11), and (12)
concern connectivity of a generator bus to itself, another bus
(not necessarily a generator bus), and a branch, respectively.
Constraints (13), (14), and (15) concern re-energization of a
bus, a branch, and a generator, respectively. Constraints (16)
and (17) capture real power flow in a branch in terms of the
voltage angles at the branch’s origin and destination buses.
Constraint (18) enforces thermal limits on the flow in a branch.
Constraints (19), (20), (21), and (22) concern aspects of bus
operation: voltage angle limits, load shed limits, generator
output limits, and power balance, respectively.

B. Linearization

Although the optimization model contains some nonlinear
constraints, these can be linearized such that the model is
recast as a two-stage MILP stochastic program with integer
(i.e., binary) variables only in the first stage. A nonlinear
equality constraint involving a product of binary-valued vari-
able expressions, such as constraint (5), is linearized exactly
as multiple inequality constraints by McCormick relaxation.
All second-stage variables are continuous, but ones that the
nomenclature identifies as taking on binary values are bounded
within [0, 1] and can trace their integrality back to binary-
valued parameters and binary first-stage variable ei.

Additionally, since constraints (11) and (12) involve random
parameters but not variables, these constraints are included
(in the form of linear inequality constraints from McCormick
relaxation) to determine the values of variables Ψs

i1i2
and

Ψs
il only in cases where the formulation is adapted for the

expected value and discretized expected problems described in
Section III. In any other case, all instances of Ψs

i1i2
and Ψs

il are
regarded as parameters because they can have their values fully
determined during preprocessing that occurs before the for-
mulation instance is constructed. The ability to determine the
values during preprocessing is noteworthy; while the number
of paths |Pi1i2 | from one bus to another could be exponential
in the number of branches, preprocessing would not exacerbate
the exponential complexity as optimization might. On the
contrary, determination of values by preprocessing would lend
itself to parallelization if needed, which would in general be
harder to achieve with optimization.



III. MODELING UNCERTAINTY

This section provides definitions related to stochastic program-
ming that motivate the numerical results in Section IV.
A. Standard Form of Linear Stochastic Program

As a two-stage linear stochastic program, the optimization
model in Section II adheres to standard form [8]

z∗ = min cTx+ E[Z(x, ξ)] (23)

s.t. x ∈ X ⊆ RN1 ,
where z∗ is the optimal objective value of the stochastic
program, X is a feasible set, and Z(x, ξ) is the optimal
objective value of the second-stage problem

Z(x, ξ) = min q(ξ)Ty (24a)

s.t. y ∈ RN2
+

T(ξ)x+W(ξ)y = h(ξ). (24b)
The first-stage and second-stage decisions are captured in x
and y, respectively, and the first-stage decisions from solving
(23) can be denoted as x∗. It is assumed that the possible real-
izations of random parameter vector ξ reside within support Ξ.
Technically, the parameter vectors q(ξ), h(ξ) and parameter
matrices T(ξ), W(ξ) can have an affine dependence on ξ. In
practice, q and W are frequently constant in ξ; the condition
of W being constant in ξ is known as fixed recourse.
B. Sample Average Approximation

Often the probability distribution of ξ is either continuous or
defined over an astronomical number of countable realizations.
Then, for computational tractability, a common approach is
sample average approximation (SAA) [8]: given a sample
ξ1, . . . , ξN of N realizations of ξ, the problem solved in place
of the original stochastic program (23) is

min
x∈X

cTx+
1

N

NX
n=1

Z(x, ξn). (25)

C. Wait-and-See Problem

Typically, a major obstacle to finding a satisfactory solution
to the stochastic program is that different first-stage decisions
cannot be made for each realization. If they could, then (23)
would become the wait-and-see problem [8] as follows:

WS = E[min
x∈X

cTx+ Z(x, ξ)], (26)
and then it would clearly hold that WS ≤ z∗ (i.e., WS would
be a lower bound on the stochastic program’s optimal objective
value). The difference z∗−WS is known as the expected value
of perfect information, or EV PI .
D. Expected Value Problem

While the wait-and-see problem provides a lower bound, it
ultimately does not yield a single set of first-stage decisions x
that attempts to account for the many possible realizations of
ξ. If q, W are constant in ξ, an alternative to the wait-and-see
problem (26) is the expected value problem [9] as follows:

EV = min
x∈X

cTx+ Z(x,µ), (27)
where µ is the expected value (i.e., mean) of ξ in view of
its probability distribution, and the first-stage decisions from
solving (27) can be denoted as xEV. In exchange for the
accuracy of (25), problem (27) offers swift solution. It can

be proved [9] by Jensen’s inequality that EV ≤ z∗ (i.e.,
EV is, like WS, a lower bound on the stochastic program’s
optimal objective value). Moreover, the optimal objective value
from fixing x to xEV in (23) is referred to as the expected
cost of expected value solution, or EEV . Certainly, it holds
that EEV ≥ z∗, as no first-stage decisions can achieve a
lower objective value for (23) than x∗ does. The difference
EEV − z∗ is the value of stochastic solution, or V SS.

Furthermore, it has been shown [9] that if parameter matrix
T is constant in ξ and X is continuous, then EV ≤ WS.
E. Discretized Expected Value
As is the case for the model in Section II, a two-stage linear
stochastic program may have the following characteristics:

• All second-stage variables y continuous,
• Parameter vector q and matrices T, W constant in ξ,
• Random parameter vector ξ with nonnegative, integer-

valued (e.g., binary-valued) support Ξ, where nonzero
values for components represent adverse system condi-
tions (e.g., damages) hindering (24a).

Nevertheless, since the expected value µ generally does not
have integer-valued components, it may cause a stochastic
program with these characteristics to exhibit unintended be-
havior. Therefore, in addition to the optimization model for
pre-blackout MES placement, this paper introduces and studies
the novel concept of a discretized expected value realization
ξDEV. For a stochastic program with the aforementioned char-
acteristics, the ξDEV is found by solving the MILP

min ∥ξ − µ∥1 (28a)

s.t. x ∈ X ,y ∈ RN2
+ , ξ ∈ Ξ ⊆ ZK

+

cTx+ qTy ≤ WS (28b)

1Tξ ≥ 1Tµ (28c)
Tx+Wy = h(ξ), (28d)

a search problem that, given µ, identifies the nearest integer-
valued realization of ξ satisfying requirements encoded in the
constraints. Then, if the discretized expected value problem

DEV = min
x∈X

cTx+ Z(x, ξDEV) (29)
is solved, it holds that DEV ≤ WS ≤ z∗ because the
inequalities DEV ≤ WS and WS ≤ z∗ hold individually.
The first-stage decisions from solving (29) can be denoted as
xDEV, and the optimal objective value from fixing x to xDEV
in (23) can be called the EDEV .

Typically, realizations of ξ within a support Ξ vary in
severity, as reflected in the extent to which they hinder the
second-stage objective (24a). If a single realization is to be
selected to represent the probability distribution of ξ, then two
extremes should be avoided: (i) excessive severity, especially
where no first-stage decisions x can appreciably relieve the
impact of the realization, and (ii) trivial severity, especially
where no first-stage decisions x are adequately warranted.
While the inequality EV ≤ z∗ holds naturally, one of its
side effects is that the severity of µ tends not to be excessive
in view of the distribution, though it may still be trivial.

Within the search problem (28), constraints (28b) and (28d)
are feasible for a given ξDEV if and only if DEV ≤ WS



Fig. 1. IEEE 14-Bus System and its centers for correlated branch outages.

holds. The inequality DEV ≤ WS mirrors EV ≤ WS.
Then, the inequalities DEV ≤ WS and WS ≤ z∗ together
imply that DEV ≤ z∗, which not only mirrors EV ≤ z∗

but likewise has the effect of preventing the severity of ξDEV
from being excessive. (If X is not continuous—it is not for
the model in Section II—a T constant in ξ does not ensure
EV ≤ WS, but EV ≤ z∗ still holds.) Similarly, constraint
(28c) intends to reallocate damages in µ to constitute integer-
valued components in ξDEV, preventing the severity from being
trivial. Configurable tolerances and factors are avoided in (28)
so as to limit arbitrariness in the definition of ξDEV.

IV. NUMERICAL RESULTS

This section describes experiments by which the formulation
was validated and analyzes results from the experiments.

A. Experiment Setup

The experiments were conducted in a variant of the IEEE 14-
Bus System. Compared to the MATPOWER version [10] of
the network, this variant maintained a total load demand of 259
MW but, for a more realistic reserve margin, halved the real
generation capacities to sum to 386.2 MW. Because the system
contained just five generators as seen in Fig. 1, only the one at
Bus 2 was considered BS-capable, and only one MES resource
could be placed before the blackout. Additionally, value of lost
load was assumed uniform throughout the system so that the
objective function effectively became system load shed.

For the experiments, realizations ξ within a probability
distribution differed in what branches they disabled but did
not disable any buses or generators. Six distributions for ξ
were assessed. To achieve correlated branch outages, each
distribution supposed a set of centers for branch outages,
where each center consisted of one or more branches. Within
a distribution’s set of centers, the occurrences of the centers
were regarded as mutually exclusive, equiprobable events with
total probability of 1. However, the centers were permitted to
overlap as only one could occur at a time. Then, the process
for generating a scenario from a distribution was as follows.

(I) From the distribution’s set of centers for branch outages,
randomly select one center to occur.

(II) Given a selected center, consider all branches in the center
to be disabled. Moreover, perform the following steps for
each branch not in the selected center.

(A) Consider γ(δ/∆) the conditional probability that the
non-center branch is disabled, where γ is a fixed
fractional decay rate, δ is the distance (on the one-
line diagram) of the branch’s midpoint from the nearest
midpoint of any branch in the selected center, and ∆
is a fixed distance.

(B) With the conditional probability from (A), randomly
decide whether the branch is disabled.

Supposing a one-line diagram taken from [11], Fig. 1
shows three sets of centers for branch outages. Of the six
distributions assessed, Distr. A through C supposed center
sets 1 through 3, respectively, and a fractional decay rate of
γ = 1

3 for conditional probability. Distr. D through F likewise
supposed center sets 1 through 3, respectively, but γ = 1

5 .
The dimensions of the one-line diagram of Fig. 1 were around
170× 210, so all distributions supposed ∆ = 100.

For each of the six distributions, two samples of 2000 sce-
narios each were generated: a training sample and a validation
sample. The following experiments were then conducted.

(I) For the training sample, solve an SAA instance (25).
Then, fixing the first-stage decisions x to those from (25),
solve (24) for each scenario in the validation sample.

(II) To estimate WS, solve an approximation of (26) using
the validation sample.

(III) Solve (27), yielding objective value EV and first-stage
decisions xEV. Then, to estimate EEV , fix x to xEV and
solve (24) for each scenario in the validation sample.

(IV) Solve (28) for ξDEV, as well as (29) for xDEV and DEV .
Then, to estimate EDEV , fix x to xDEV and solve (24)
for each scenario in the validation sample.

Whenever the validation sample was used, the 2000 second-
stage objective values were then taken to produce a 95%
confidence interval, the midpoint of which was a sample mean
estimate. In place of the true value of WS, (28) used the
bottom of the confidence interval for WS.
B. Analysis and Observations

The optimization model instances for the experiments were
solved to zero optimality gap using Gurobi 9.1 [12] on a
desktop computer with a 3.70-GHz, 8-core processor and 16
GB of RAM. For any distribution, the SAA instance was
the single most computationally expensive model instance to
solve. Notwithstanding, serial execution of preprocessing (e.g.,
determination of values for instances of Ψs

i1i2
and Ψs

il) for
the SAA instance of each distribution required less than five
minutes, and solving the SAA instance once preprocessing was
completed required no more than 12 seconds.

Fig. 2 displays objective (i.e., system load shed) values
from the experiments for each distribution. Table I contains
key qualitative results. Stated under “MES Bus” are the pre-
blackout MES placements prescribed by (25), (27), and (29),
respectively. Reported under “Discretized Expected Value” are
the 1-norm distance from µ to ξDEV, the amount by which that
distance exceeded the distance from µ to the binary-valued
realization simply rounding each component of µ, and the
indices of branches disabled in ξDEV.



Fig. 2. System load shed values for various representations of uncertainty.
TABLE I

RESULTS FOR MES PLACEMENT AND DISCRETIZED EXPECTED VALUE

Branch
Outage
Distr.

MES Bus Discretized Expected Value

SAA EV DEV Dist. Excess Disabled BranchesDist.
A 6 None 8 9.25 0.04 4,5,6,7,9,11,13,15,16,17,18
B 3 6 8 5.49 0.05 1,2,4,5,6,7,8,9,10,11,12,13,16,17,18,

19,20
C 3 None 6 6.63 0.48 2,5,6,7,8,9,10,11,12,13,14,15,16,17,

18,19,20
D 6 None None 8.84 1.29 6,7,8,11,15,16,17,18
E 3 8 6 5.91 0.00 1,2,5,7,9,10,11,12,13,16,17,18,19
F 3 None 6 7.28 0.19 6,7,8,9,10,11,12,13,14,15,16,18,19

The fractional component values in µ caused the linear
inequality constraints from McCormick relaxation to behave
poorly for (27): even if a branch had a component value above
0.8 in µ, two islands on opposite ends of the branch could
still be considered connected through it for energization. Fig.
2 shows that, for each distribution, (27) ultimately saw zero
load shed. In the same vein, Table I shows that except for
Distr. B and E, which had some binary-valued components in
µ, (27) did not prescribe MES placement.

In contrast, each ξDEV not only seemed tenable in view of
its distribution but also led to a reasonable MES placement.
For example, since the branches Distr. A disabled tended to be
near the middle of the network, the only branches that the ξDEV
of Distr. A disabled along the fringes of the network were 15
and 17. The disabling of Branches 15 and 17, in conjunction
with branches near the middle, isolated an island consisting
of Buses 4, 7, and 8. Thus, (29) prescribed placement of the
MES at Bus 8, where the MES could start up the generator that
then supplied load at Bus 4. Likewise, the ξDEV of Distr. B,
which tended to disable branches in the northern and western
portions of the network, cut off an island consisting of Buses
7, 8, and 9. Therefore, (29) again prescribed placement of the
MES at Bus 8. Unfortunately, as the ξDEV of Distr. D only
isolated an island that contained Bus 8 but no load, (29) did
not prescribe placement of an MES for Distr. D. Nevertheless,
constraint (28c) kept the severity of ξDEV from being trivial;
among the branches disabled were 11, 16, and 18 near the
middle of the network, cutting off load buses 10 and 11.

By applying for each distribution the multiple replication
procedure [13], a method for assessing the quality of a
candidate set of first-stage decisions x to a stochastic program,

it was found safe to practically regard the midpoint of the
confidence interval for SAA in Fig. 2 as an estimate of z∗.
Then, from the confidence intervals in Fig. 2, it can be said
that DEV ≤ WS ≤ z∗ held empirically, as did EV ≤ z∗.
For Distr. A, C, and F, (29) prescribed MES placement while
(27) did not, so EDEV was noticeably lower (i.e., better) than
EEV and not much greater (i.e., worse) than z∗. For Distr. B
and E, (27) somehow prescribed MES placement; EEV was
worse than EDEV for Distr. B but better for Distr. E. Distr. D
was the only one for which (27) and (29) both did not prescribe
MES placement; EEV was clearly equal to EDEV . Because
(27) only prescribed MES placement for two distributions,
overall it seems that V SS = EEV − z∗ was substantial. In
contrast, (29) reliably prescribed MES placements that were
reasonable even if different from those prescribed by SAA,
so EDEV − z∗ was less sizeable in general. Additionally,
it seems that EV PI = z∗ − WS was usually moderate in
magnitude but not as substantial as V SS.

V. CONCLUSION

This paper has presented a stochastic programming model on
optimal pre-blackout MES placement for BS restoration, as
well as the novel analytical concept of a discretized expected
value realization. Experiments have not only validated the
model but also demonstrated the potential of the concept.
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