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Rare Earths Metals (REMs) Are Technologically

Important

RARE EARTH ELEMENTS
AND CRITICAL MINERALS
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Rare earth metals (REMs; lanthanides plus yttrium and
scandium) are critical materials:

* telecommunications,

* energy infrastructure and renewable energy

* lighting

* medical technologies,

* defense technologies

* other essential advanced systems.

Rare earths in smartphones, EVs
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3 ‘ Where Do We Get REMs?

The U.S. was once a leader in REM mining and production...
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4 ‘ Where Do We Get REMs?

Today, the U.S. relies on 100% import for many critical minerals.

) ) 2019 U.S. net Top ) ) 2019 U.S. net Top

Mineral Commodity . Mineral Commodity . .
import reliance Producer import reliance Producer

arsenic 100% China barite 87% China
cesium 100% Canada |antimony 84% China
fluorspar 100% China  |rhenium 82% Chile —
gallium 100% China |cobalt 78% Congo Sc
graphite (natural) 100% China [tin 77% China
indium 100% China |aluminum (bauxite) >75% China ==

manganese 100% China chromium >75% South Africa I l I I I l Id

niobium 100% Brazil platinum group 64% South Africa

rare earth group 100% China |[magnesium 52% China - @@@E@@@
(o

rubidium 100% Canada |germanium >50% China

scandium 100% China [tungsten >50% China

strontium 100% Spain lithium >25% Australia Rare Earth Metals (REE)
tantalum 100% Rwanda [beryllium <21% U.S. Critical:

bismuth 96% China hafnium n.d. Australia

tellurium >95% China uranium n.d. Kazakhstan Nd’ Tb’ Dy’ EU, Y’ Er’ Pr
vanadium 94% China helium net exporter U.S. Uncritical: La, Smr Gd

titanium 93% China |zirconium net exporter Australia Excessive (supply > demand):
potash 91% Canada ["* not enough information to calculate the import reliance Ce, HO, Tm, Yb, Lu

USGS Mineral Commodity Summaries 2020



‘ REM Harvesting Challenges

REMs are:

Naturally dilute
Found in complex mixtures

Similar charge, size, and
chemistry

Current methods:

Thousands of mixer-settler
tanks

Energy & chemically-
intensive

Large ammonia consumption
Toxic, carcinogenic and
hazardous to aquatic
life/environment.
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Fig. 2. Solvent extraction. (A) Commonly used extractants. (B) Typical RE-containing minerals. (C) Cut-off side view of a simple mixer-setter unit. (D) Schematic
extraction equilibria. (E) Flow chart (top view) of batteries of mixer-settlers in a model industrial process with extraction, scrubbing. and stripping stages.

Cheisson, T. & Schelter, E. J. Rare earth elements: Mendeleev’s bane, modern marvels. Science 363, 489-493 (2019).



Selective Bio-Inspired Harvesting of Rare Earth
Metals

Biological Systems Have Created a
Solution...

Methyltrophic bacteria, which rely on the catalytic conversion of methanol as a
primary carbon and energy source, depend on highly-selective binding of
lanthanide (LN)-group REMs to enable these critical catalytic processes.

A % o B

HN\

CH3;OH 2 x cyt ¢ red

MxaG (M =ca')

MxaFl (M = Ca') Ep=+256 mV

XF(ML) XG(ML)

Q o
©
o En=+172 mV . e
HN \ o
090 e
p -
//
M | m

. . I
J.A. Cotruvo, ACS Cent. Sci. 2019, 5, ggg'fl;%”’zg 12‘ Schelter, E. J. Science 363, ]
1496 -493 (2019).
\b CEUUOO00000C
sed by all known Ln-utilizing organisms = used inefficiently by some or ganisms  [ll= no evidence of utilization

Abundance in crust: @ =70 ppm 05ppm
LewnsaC|d|ty —_—



Lanmodulin (LanM) has remarkable REM Binding

7 1 Selectivity
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LanM has been shown to have a strong affinity, (K; ~1-10 pM for a range of lanthanides, compared to -1 mM for Ca?*).
“REE/non-REE selectivity of LanM is orders of magnitude higher than most small molecules or macromolecules ever studied.”

- Deblonde, et al.

5

We hypothesize that specific compositional and structural properties of biological ligands that govern selective interactions with ‘

solubilized REMs can be distilled to inform synthetic bio-inspired analogs for REM extraction and separation.

Deblonde, G. J. P. et al. Selective and Efficient Biomacromolecular Extraction of Rare-Earth
Elements using Lanmodulin. Inorganic Chemistry 59, 11855-11867, (2020).
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s 1 Lanthanides are Strongly Coordinated by Waters!
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Computational Modeling: Binding Pocket is Rich in
o I Acid, Amide, and Amines, and Water

§

« 15 Lanthanum Containing PDB Structures
« 27 Valid Lanthanum Binding Sites

* 153 Binding Site Residues

* 5.9 Residues per Binding Site

« 7.8 Contacts per Binding Site
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Natural REM binding structures are structurally complex, but share common ligand chemistries.
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0 ‘ Proof of Principle lon Capture: Acid lon Exchange Resin

Flowing dissolved Nd3* solution through commercial ion-exchange resin, showed feasibility of
removing REM from solution.

UV-Vis Spectroscopy
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This process is not selective or reversible, however.



11 ‘ Composition Alone is Not Enough!

The the environment created by the solid
support, as well as the structure of the ligand
may be important!

Successful capture was
enabled with a
micro/nanoporous matrix...

Commercial PSDVB-PA
(~ 5 um diameter)



2 1 Exploring Supramolecular Alternative Capture

We have previously explored the use of bio-inspired polyelectrolytes to moderate ion transport in thin films.

Discovery of Phe-role in biological ion channel inspired introduction of Phe into synthetic thin films.
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Percival, Rempe, Small, Spoerke, et al.. Soft Matter, DOI: 10.1039/d1sm00134e (2021).



13 I Polyelectrolyte Films Impact Selective lon Transport

We have previously explored the use of bio-inspired polyelectrolytes to moderate ion transport in thin films.
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The polyelectrolyte film, modified with a bio-inspired amino acid, resulted in significant improvement in
ionic selectivity of polyelectrolyte membranes.

Percival, Rempe, Small, Spoerke, et al.. Soft Matter, DOI: 10.1039/d1sm00134e (2021).



Can We Capture Rare Earths Using Poly-Acrylic Acid?

Absorbance
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Can We Capture Rare Earths Using a Supramolecular
Polyelectrolyte?

High concentrations of acids and amines in LanM binding pocket motivated polyelectrolyte studies of

ion binding.
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Poly (acrylic acid) (PAA) Polyethyleneimine (PEI) Polyelectrolyte (PE)

(branched)

Objective: simple, inexpensive, non-
toxic procedure to extract REM’s

complex



Slimed! Forming a Polyelectrolyte Precipitate

Adding PE| to the solution leads to the rapid formation of
a coherent, viscous precipitate.
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Capture of the lons in a Supramolecular Aggregate!

Removal of the precipitate leads to removal of the Nd3*
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s 1 What if We Reverse the Order of Addition?
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19 1 The Order of Introduction of Polymers Matters
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» Nd concentration decrease by 4.9-5mM (99-
100%) in all trials of NdCl; introduced to PEI first.

> PEIl interaction with ions first results in a
greater capture of ions w/ lower quantity of
materials
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» Nd conc. decreased
acid to ion ratio

» Nd conc. decreased
acid to ion ratio

» Nd conc. Decreased
acid to ion ratio

by 2.9mM (59%) for 20:1
by 3.3mM (67%) for 60:1

by 4mM (81%) for 100:1



20 1 PElI Complex Formation Matters

——5mM NdCI3 baseline
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» Citric Acid substituted for PAA results in peak shifts and failure to fully capture

ions

» Peak shifts observed due to alteration of environment around ions.

» Polymeric form of acids crucial for formation of the PE complex to capture ions
effectively



21
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Effective

PE complex made prior to exposure to ions results in diminished capture
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» Peaks shifted and only saw a decrease of
1.47-2.52 mM (29.4-50.3%) between 20:1
and 100:1 acid:ion ratios

» Necessary to introduce ions to
environment pre formation of PE
complex

» Harder to separate larger volume PE
complex from ions



, | What Happens with PEI Only?
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23 1 Testing Impact of pH: Neutralized PEI
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Hydroxyls affect water environment around Nd3* ions.
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» Neutralized PEI shifts back to original peak
placement.

> Hydroxyls drive water off of Nd3* ions,
making it easier for PAA to capture them.

» PAA with neutralized PEI (2:1 ratio) only
yields ~45% capture.



24 1 pH AND Amines are Important
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Amine presence stabilizes ions in presence of hydroxyls.
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» High pH without amines (NaOH) crashes out
system (inorganic precipitate)
» PEl and NH,OH don’t crash out at high pH
» addition of amines help stabilize
formation of hydroxides and oxides
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s | What Do We Know?

» PE complex formation is necessary for ion capture
» PAA alone limited capture ability (<25% of ions)

» Non-polymeric form of acid won’t capture ions effectively

» Order of Polymer Introduction Matters
» PAA first reduces ions >98% at a 20:1 acid:ion ratio and 2:1 PEI:PAA ratio

» PElI first reduces ions >98% at a 20:1 acid:ion ratio and 1:1 PEI:PAA ratio
» PE complex first has limited capture

» PEIl interacts with ions to improve capture conditions
» High pH plus amines matter for full capture



Can We Recover the lons?

Acidification to disrupt the supramolecular aggregate

leads to controlled release of the REM!
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27 | Take Home Messages

» There is an important need to develop domestic sourcing of Rare Earth
materials.

» Biological systems are powerful inspiration for sustainable, selective Rare
Earth harvesting.

» PE complex captures Nd3* ions out of solution
» Polymeric form of both acid and base essential for capture

» Non-selective between divalent and trivalent ions

» PEIl interaction with ions first results in best capture

» Hydroxyls drive off water, making it easier for PAA to capture Nd3+ and exclude water
from PE complex

» Amine presence important to stabilize ions



28 1 Thank You!
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