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Outline ) S

= Making Parallel Programming Easier

= Qthreads Chapel Support

= The two Qthreads schedulers (plus the old one)
= Sherwood
= Nemesis
= Distrib

= Performance evaluation

= Future work

= Conclusions




Making Parallel programming
easier
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= Typical Parallel Programming: MPI and BSP

= Downside: fiddly, lots of application programming
effort

= Another Strategy: Push complexity of parallel programs
into the runtime

= Programmer specifies data dependencies and smallest
units of work.

= This is the approach taken by the HPCS language Chapel
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Solution: Multiresolution ) 5.

= Ability to change underlying aspects of language
= Write one program, compile in different ways

= Choose abstraction at compile time rather than in the
code.

= Goal: enable performance portability, reduce
programmer effort
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Chapel structure

Chapel Runtime Support Libraries
(written in C)
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Qthreads Chapel Support b

Qthreads
= user level tasking model

= low level, anonymous threads, no signal handling
cooperative.

= lighter than pthreads
Distinguishing feature Full Empty Bits (FEBSs)

= models the Cray XMT FEB, primitives can be in
hardware or software

Default for Chapel

Qthreads tasking model is also multiresolution, can
choose schedulers

6




Objective: scheduler for
many-core
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= QOur old default scheduler built for NUMA multicore
machines. Mutexes don’t scale for many-core.

= We’ve been working on schedulers to use lock-free
methods and different scheduling strategies for many-
core.

= Evaluating two schedulers, Nemesis and a new distrib.
Nemesis good for simple streaming tasks. Distrib is good
for irregular jobs using work stealing.
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Qthreads schedulers ) s,

= Qthreads schedulers are defined modularly

= Can change the scheduling behavior at configure time

= Dictate how jobs are added and removed from
cooperative thread queue.




Sherwood )

= Original work stealing scheduler for Qthreads
= |dea was to optimize for NUMA multicore
= mutex locking
= look at both ends of double ended queue
= LIFO scheduling for cache locality
= Work stealing bulk between NUMA domains

= Looking at both ends of queue prevents lock free
approaches

= S0 good for older multicore, poor performance on
manycore.




Nemesis ) B,

= Alternative to Sherwood

= Took an idea from MPICH2, the “Nemesis” lock free
queue (cite)

= Scheduling is simple FIFO, no load balancing
= Optimized for performance of streaming jobs
= No concept of work stealing or load balancing

don’t call it new, call it alternative




Newest Distrib )

= Take advantage of lessons learned from Nemesis, but
take advantage of work stealing

= Use Nemesis-style lock free queue

= At the same time lightweight work stealing, steal one at
a time using a predefined “steal ratio” of how many
times to check the local queue, before attempting to
steal from other queues

Add slide here summarizing the
different schedulers — maybe there

was a table in the paper? Define stealing ratio




Summary

Table 1: Qthreads schedulers

Scheduler | Quet Workstealing
Add another column about which
Sherwood One performs better where {es
one |
Nemesis | Only No
DlStrlb Only ULIC pel WULIRCL Uicau | {eS
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Performance Evaluation LL

= Want to see how much overhead using LIFO scheduling
and our minimal work stealing contributes

= Questions to answer:

= What is the overhead of work stealing?

= When should we use Nemesis and when should we
use Distrib?
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Experimental Design )5

= Knights Landing Processor 7250
= 68 cores, 272 hardware threads, 1.6 GHz.
= 16GB of high bandwidth memory (MC-DRAM) on
package
= operate in cache mode.

= Chapel 1.14, GCC version 4.8.3 using -O3 and -
march=native

= Performance comparisons using Linux’s perftools suite
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Benchmark overview

= Quicksort: simple distributed quick sort

= HPCS Scalable Synthetic Compact Applications graph
analysis (SSCA#2)

= Stream: memory streaming benchmark

= Graph500: two benchmarks, search and shortest path
= Tree: constructs and sums a binary tree in parallel




Quicksort: distrib load balancing
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Distrib better for SSCA2 (lower is better) )z,

SSCA2 (Cache)
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Nemesis FIFO better for Stream ) B
(higher is better)

Stream (Cache)
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Tree: Distrib better at scale ) .
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Distrib better for graph500 e
(lower is better) =

Graph500 (Cache)
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Experimental conclusions ) £

= Distrib is better for most cases at scale
= Overhead makes it slower for small problems

= Nemesis is still better for streaming jobs with simple
workflows




Future work )

= All application progress threads in Qthreads

= (eg. MPI and Openfabrics asynchronous network
threads)

= Right now nemesis and distrib have a backoff to make
time for progress threads

= |f all components of app use runtime, no need to
backoff

= |s it possible to make distrib perform better than Nemesis
in all cases?

= Make work stealing zero cost (turn off w/ no overhead)

= Switch LIFO/FIFO
= Dynamic schedulers?

lithe like — explain 22




Conclusions )

= For most use cases distrib is better
= For heavy streaming nemesis is more performant

= Can choose best tool for best job, fitting into Chapel’s
multi resolution approach

= Helps solving a wide variety of HPC problems




Thank You
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