Sandia

Exceptional service in the national interest National
Laboratories

Noah Evans, Richard Barrett, Stephen Olivier, George Stelle

nevans@sandia.gov
6/26/17
""..'1- X (e ARIVIATCS AT =3
1 EN ERGY FATY™ .5 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
W e S Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Outline) S

= Making Parallel Programming Easier

= Qthreads Chapel Support

= The two Qthreads schedulers (plus the old one)
= Sherwood
= Nemesis
= Distrib

= Performance evaluation

= Future work

= Conclusions

Making Parallel programming
easier

Sanvia
I'" Matinnal
[aboratores

= Typical Parallel Programming: MPI and BSP

= Downside: fiddly, lots of application programming
effort

= Another Strategy: Push complexity of parallel programs
into the runtime

= Programmer specifies data dependencies and smallest
units of work.

= This is the approach taken by the HPCS language Chapel

Sarvd

Solution: Multiresolution) 5.

= Ability to change underlying aspects of language
= Write one program, compile in different ways

= Choose abstraction at compile time rather than in the
code.

= Goal: enable performance portability, reduce
programmer effort

-3
BEY
S35
T

Chapel structure

Chapel Runtime Support Libraries
(written in C)

2 || o

73) —
3 g Q «n
3) = < o
c 3 =3 > >
= o ® S 8
& < » a

| = =X o

- et (/)]

3 S

Q)

Q

)

Sarvd

Qthreads Chapel Support b

Qthreads
= user level tasking model

= low level, anonymous threads, no signal handling
cooperative.

= lighter than pthreads
Distinguishing feature Full Empty Bits (FEBSs)

= models the Cray XMT FEB, primitives can be in
hardware or software

Default for Chapel

Qthreads tasking model is also multiresolution, can
choose schedulers

6

Objective: scheduler for
many-core

Sanvia
r“ Matinnal
[aboratores

= QOur old default scheduler built for NUMA multicore
machines. Mutexes don’t scale for many-core.

= We’ve been working on schedulers to use lock-free
methods and different scheduling strategies for many-
core.

= Evaluating two schedulers, Nemesis and a new distrib.
Nemesis good for simple streaming tasks. Distrib is good
for irregular jobs using work stealing.

Sanvia

Qthreads schedulers) s,

= Qthreads schedulers are defined modularly

= Can change the scheduling behavior at configure time

= Dictate how jobs are added and removed from
cooperative thread queue.

Sherwood)

= Original work stealing scheduler for Qthreads
= |dea was to optimize for NUMA multicore
= mutex locking
= look at both ends of double ended queue
= LIFO scheduling for cache locality
= Work stealing bulk between NUMA domains

= Looking at both ends of queue prevents lock free
approaches

= S0 good for older multicore, poor performance on
manycore.

Nemesis) B,

= Alternative to Sherwood

= Took an idea from MPICH2, the “Nemesis” lock free
queue (cite)

= Scheduling is simple FIFO, no load balancing
= Optimized for performance of streaming jobs
= No concept of work stealing or load balancing

don’t call it new, call it alternative

Newest Distrib)

= Take advantage of lessons learned from Nemesis, but
take advantage of work stealing

= Use Nemesis-style lock free queue

= At the same time lightweight work stealing, steal one at
a time using a predefined “steal ratio” of how many
times to check the local queue, before attempting to
steal from other queues

Add slide here summarizing the
different schedulers — maybe there

was a table in the paper? Define stealing ratio

Summary

Table 1: Qthreads schedulers

Scheduler | Quet Workstealing
Add another column about which
Sherwood One performs better where {es
one |
Nemesis | Only No
DlStrlb Only ULIC pel WULIRCL Uicau | {eS

Sarvia
Matinnal
[aboratoros

Performance Evaluation LL

= Want to see how much overhead using LIFO scheduling
and our minimal work stealing contributes

= Questions to answer:

= What is the overhead of work stealing?

= When should we use Nemesis and when should we
use Distrib?

Sarvia
Matinnal
[aboratores

Sarvd

Experimental Design)5

= Knights Landing Processor 7250
= 68 cores, 272 hardware threads, 1.6 GHz.
= 16GB of high bandwidth memory (MC-DRAM) on
package
= operate in cache mode.

= Chapel 1.14, GCC version 4.8.3 using -O3 and -
march=native

= Performance comparisons using Linux’s perftools suite

Sarvia
|“'| Matinnal
[aboratores

Benchmark overview

= Quicksort: simple distributed quick sort

= HPCS Scalable Synthetic Compact Applications graph
analysis (SSCA#2)

= Stream: memory streaming benchmark

= Graph500: two benchmarks, search and shortest path
= Tree: constructs and sums a binary tree in parallel

Quicksort: distrib load balancing

better (lower is better)
Quicksort (Cache)

scheduler
~ distrib

~— nemesis
~ sherwood

1.6-

1.4-

Clocktimg (Seconds)
o

-
o
1

0.8-

06+00 56+04 16+05
Size of problem 2*n

Sarvia
Matinnal
[aboratoros

Distrib better for SSCA2 (lower is better))z,

SSCA2 (Cache)

50- scheduler
~ distrib

- nemesis
~ sherwood

W B
o o
1 1

Clocktime (Seconds)

N
o
1

10-

0 100 200
Number of Tasks

Nemesis FIFO better for Stream) B
(higher is better)

Stream (Cache)

—

(&)

o
1

—

o

(@)
1

Need more polished explanation of
this unintuitive result that nemesis and
sherwood are similar

(6)]
o
1

Throughput (Gigabytes per sec)

0 100 200
Number of Tasks

Tree: Distrib better at scale) .

Clocktime (Seconds)

0.4-

-
[\
1

o
(0]
1

Tree (Cache)

scheduler
~ distrib
~ nemesis
-~ sherwood
5 10
Size of problem 2”n 19

Distrib better for graph500 e
(lower is better) =

Graph500 (Cache)

scheduler
128 - ~——distrib

- nemesis

~ sherwood

Do |
C
o point out that nemesis line is
3 obscured by sherwood line
2
()
£ s-
-
2
(&
o
@)
2 -

5 10 \ 15
Size of problem 27n .
I —

A
Matinnal

Experimental conclusions) £

= Distrib is better for most cases at scale
= Overhead makes it slower for small problems

= Nemesis is still better for streaming jobs with simple
workflows

Future work)

= All application progress threads in Qthreads

= (eg. MPI and Openfabrics asynchronous network
threads)

= Right now nemesis and distrib have a backoff to make
time for progress threads

= |f all components of app use runtime, no need to
backoff

= |s it possible to make distrib perform better than Nemesis
in all cases?

= Make work stealing zero cost (turn off w/ no overhead)

= Switch LIFO/FIFO
= Dynamic schedulers?

lithe like — explain 22

Conclusions)

= For most use cases distrib is better
= For heavy streaming nemesis is more performant

= Can choose best tool for best job, fitting into Chapel’s
multi resolution approach

= Helps solving a wide variety of HPC problems

Thank You

24

