
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

A tale of two schedulers
Noah Evans, Richard Barrett, Stephen Olivier, George Stelle

nevans@sandia.gov
6/26/17

Outline

▪ Making Parallel Programming Easier
▪ Qthreads Chapel Support
▪ The two Qthreads schedulers (plus the old one)
▪ Sherwood
▪ Nemesis
▪ Distrib

▪ Performance evaluation
▪ Future work
▪ Conclusions

2

Making Parallel programming
easier

▪ Typical Parallel Programming: MPI and BSP
▪ Downside: fiddly, lots of application programming

effort
▪ Another Strategy: Push complexity of parallel programs

into the runtime
▪ Programmer specifies data dependencies and smallest

units of work.
▪ This is the approach taken by the HPCS language Chapel

3

Solution: Multiresolution

▪ Ability to change underlying aspects of language
▪ Write one program, compile in different ways
▪ Choose abstraction at compile time rather than in the

code.
▪ Goal: enable performance portability, reduce

programmer effort

4

Chapel structure

5

The Structure of Chapel’s Runtime

Chapel Runtime Support Libraries
(written in C)

Tasks

C
o
m
m
u
n
icatio

n

M
em
o
ry

T
im
ers

L
au
n
ch
ers

S
tan

d
ardT
h
read

s
Wednesday, May 18, 2011

Qthreads Chapel Support

▪ Qthreads
▪ user level tasking model
▪ low level, anonymous threads, no signal handling

cooperative.
▪ lighter than pthreads

▪ Distinguishing feature Full Empty Bits (FEBs)
▪ models the Cray XMT FEB, primitives can be in

hardware or software
▪ Default for Chapel
▪ Qthreads tasking model is also multiresolution, can

choose schedulers

6

Objective: scheduler for
many-core

▪ Our old default scheduler built for NUMA multicore
machines. Mutexes don’t scale for many-core.

▪ We’ve been working on schedulers to use lock-free
methods and different scheduling strategies for many-
core.

▪ Evaluating two schedulers, Nemesis and a new distrib.
Nemesis good for simple streaming tasks. Distrib is good
for irregular jobs using work stealing.

7

Qthreads schedulers

▪ Qthreads schedulers are defined modularly
▪ Can change the scheduling behavior at configure time
▪ Dictate how jobs are added and removed from

cooperative thread queue.

8

Sherwood

▪ Original work stealing scheduler for Qthreads
▪ Idea was to optimize for NUMA multicore
▪ mutex locking
▪ look at both ends of double ended queue

▪ LIFO scheduling for cache locality
▪ Work stealing bulk between NUMA domains
▪ Looking at both ends of queue prevents lock free

approaches
▪ So good for older multicore, poor performance on

manycore.

9

Nemesis

▪ Alternative to Sherwood
▪ Took an idea from MPICH2, the “Nemesis” lock free

queue (cite)
▪ Scheduling is simple FIFO, no load balancing
▪ Optimized for performance of streaming jobs
▪ No concept of work stealing or load balancing

10

don’t call it new, call it alternative

Newest Distrib

▪ Take advantage of lessons learned from Nemesis, but
take advantage of work stealing

▪ Use Nemesis-style lock free queue
▪ At the same time lightweight work stealing, steal one at

a time using a predefined “steal ratio” of how many
times to check the local queue, before attempting to
steal from other queues

11

Define stealing ratio

Add slide here summarizing the
different schedulers — maybe there
was a table in the paper?

Summary

12

ROSS ’17, June 27, 2017, Washingon, DC, USA N. Evans et al.

• The Startup/Teardown layer initializes and �nalizes
the task runtime as well as creating singleton tasks
for begin statements.

• TheCreation and Execution of Task Lists implements
Chapel’s cobegin and coforall statements.

• The Synchronization functions implement the full/empty
semantics of Chapel’s synchronization variables.

• Task Control yields the processor or sleeps.
• Query functions allow Chapel to query the number
of tasks, threads or states.

In accordance with Chapel’s multiresolution approach
this API make no assumptions about the behavior of the
underlying runtime. This API is modular, so it is possible to
choose di�erent tasking implementations at runtime via an
environment variable.

2.3 Qthreads
The default Chapel tasking layer is the Qthreads [29] a cross
platform, general purpose, parallel runtime from Sandia Na-
tional Laboratories. Qthreads is composed of two fundamen-
tal abstractions, lightweight threads scheduled onto locality
domains called shepherds and Full/Empty Bit (FEB) synchro-
nization primitives. The goal of these abstractions is to match
hardware threading architectures that implement massive
lieghtwieght multithreading and synchronization, such as
such as the Tera MTA / Cray XMT [1]. Individual threads
of computation can be anonymous, have explicit resource
allocations, and exploit explicit locality.
This approach means that Qthreads are fundamentally

di�erent from traditional threading models. Qthreads do
not have individual thread identi�ers, signal vectors or pre-
emption. They share more in common with coroutines and
scheduler activations [2] than OS-level threads.

Scheduling in Qthreads is cooperative. When one Qthread
can no longer make progress, either via a synchronization
primitive or an explicit yield, control is then passed to an-
other waiting Qthread. This context switch occurs entirely
within user space, typically much faster than a system call
and does not require the saving of signal handlers or the
full set of system registers. These user level context switches
allow the Qthreads runtime to interleave computation with
data access. A Qthread can –for example– launch a new
Qthread to produce some data and write a FEB, then yield to
be rescheduled when the FEB is available for reading. In the
interim, another Qthread can be scheduled so that hardware
resources are not idle.

3 SCHEDULER DESIGN IN QTHREADS
Like the Chapel runtime, the Qthreads library also uses a
modular design, and among the con�gurable options is the

Table 1: Qthreads schedulers

Scheduler Queue Workstealing
Sherwood One per NUMA domain OR

one per worker thread
Yes

Nemesis Only one per worker thread No
Distrib Only one per worker thread Yes

choice of cooperative scheduler. Various schedulers are im-
plemented in terms of thread queues with de�ned interac-
tions within and between shepherds (locality domains) and
workers.

To implement a thread queue a developer satis�es an API
that provides the following functionality:

• initialization and teardown;
• enquequeing and dequeuing, aswell as �lteringmech-

anisms to remove certain classes of threads from the
queue;

• stealing control and statistics, which are optional;
• policy support which dictates whether a shepherd
can support multiple workers or only one.

The original Qthreads scheduler was a simple lock free
queue that distributed tasks in FIFO order with only one
queue and one worker per shepherd. More sophisticated
schedulers followed, and several of these are described below
and summarized in Table 1.

3.1 Sherwood
The Sherwood scheduler was the �rst work stealing sched-
uler for Qthreads, developed originally to support OpenMP
tasking over Qthreads [23]. It takes an alternate approach
to the organization of shepherds and queues. Rather than
maintaining a one-to-one mapping of shepherd and work
queue to hardware thread, Sherwood generalizes the idea
of a shepherd to correspond to a particular resource with
locality constraints (e.g., a NUMA domain) with multiple
workers per shepherd that share a queue mediated by mutex
locks.

Sherwood uses a two-level load balancing scheme combin-
ing the methods of work stealing [7] and LIFO shared queu-
ing among topologically nearby threads, known as parallel
depth-�rst (PDF) scheduling [6]. All workers within a shep-
herd share a single queue. This arrangement enables them to
bene�t from cooperative caching since they share cache and
memory resources, an e�ect of PDF schedulers [13]. Tasks
are scheduled in LIFO order, so newly created or recently
yielded tasks are executed �rst in order to exploit cache local-
ity. When a work queue is empty Sherwood attempts to work
steal from other shepherds on the system, examining other
work queues in a round robin fashion. When work is found
the scheduler attempts to take n qthreads from the victim

Add another column about which
performs better where

Performance Evaluation

▪ Want to see how much overhead using LIFO scheduling
and our minimal work stealing contributes

▪ Questions to answer:
▪ What is the overhead of work stealing?
▪ When should we use Nemesis and when should we

use Distrib?

13

Experimental Design

▪ Knights Landing Processor 7250
▪ 68 cores, 272 hardware threads, 1.6 GHz.
▪ 16GB of high bandwidth memory (MC-DRAM) on

package
▪ operate in cache mode.

▪ Chapel 1.14, GCC version 4.8.3 using -O3 and -
march=native

▪ Performance comparisons using Linux’s perftools suite

14

Benchmark overview

▪ Quicksort: simple distributed quick sort
▪ HPCS Scalable Synthetic Compact Applications graph

analysis (SSCA#2)
▪ Stream: memory streaming benchmark
▪ Graph500: two benchmarks, search and shortest path
▪ Tree: constructs and sums a binary tree in parallel

15

0.8

1.0

1.2

1.4

1.6

0e+00 5e+04 1e+05
Size of problem 2^n

C
lo

ck
tim

e
(S

ec
on

ds
)

scheduler
distrib
nemesis
sherwood

Quicksort (Cache)

Quicksort: distrib load balancing
better (lower is better)

16

Distrib better for SSCA2 (lower is better)

17

10

20

30

40

50

0 100 200
Number of Tasks

C
lo

ck
tim

e
(S

ec
on

ds
)

scheduler
distrib
nemesis
sherwood

SSCA2 (Cache)

Nemesis FIFO better for Stream
(higher is better)

18

0

50

100

150

0 100 200
Number of Tasks

Th
ro

ug
hp

ut
 (G

ig
ab

yt
es

 p
er

 s
ec

)

scheduler
distrib
nemesis
sherwood

Stream (Cache)

Need more polished explanation of
this unintuitive result that nemesis and
sherwood are similar

0.4

0.8

1.2

1.6

5 10
Size of problem 2^n

C
lo

ck
tim

e
(S

ec
on

ds
)

scheduler
distrib
nemesis
sherwood

Tree (Cache)

Tree: Distrib better at scale

19

2

8

32

128

5 10 15
Size of problem 2^n

C
lo

ck
tim

e
(S

ec
on

ds
)

scheduler
distrib
nemesis
sherwood

Graph500 (Cache)

Distrib better for graph500
(lower is better)

20

point out that nemesis line is
obscured by sherwood line

Experimental conclusions

▪ Distrib is better for most cases at scale
▪ Overhead makes it slower for small problems
▪ Nemesis is still better for streaming jobs with simple

workflows

21

Future work

▪ All application progress threads in Qthreads
▪ (eg. MPI and Openfabrics asynchronous network

threads)
▪ Right now nemesis and distrib have a backoff to make

time for progress threads
▪ If all components of app use runtime, no need to

backoff
▪ Is it possible to make distrib perform better than Nemesis

in all cases?
▪ Make work stealing zero cost (turn off w/ no overhead)
▪ Switch LIFO/FIFO

▪ Dynamic schedulers?

22lithe like — explain

Conclusions

▪ For most use cases distrib is better
▪ For heavy streaming nemesis is more performant
▪ Can choose best tool for best job, fitting into Chapel’s

multi resolution approach
▪ Helps solving a wide variety of HPC problems

23

Thank You

24

