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Photometric and Spectroscopic Temperatures
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Photometric and Spectroscopic Masses Disagree
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Fits to white dwart spectral lines ook pretty
good, but...
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Individual Balmer lines give different results
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Mass and Temperatu
Estimates Using Diffe
Photometric Bands D
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The Calibration of Photometric Systems
Depends on Fits to White Dwart Balmer Lines

The absolute flux scale is tied to the flux of Vega at 5556 A.

But relative flux of all other wavelengths depends on the 3 well observed WD
flux standards.

See lots of papers by Bohlin et al.
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flux standards.
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By using model WD spectra.

Which models do we use to set the relative flux of the 3 WD standards?



The Calibration of Photometric Systems
Depends on Fits to White Dwarf Balmer Lines

The absolute flux scale is tied to the flux of Vega at 5556 A.

But relative flux of all other wavelengths depends on the 3 well observed WD
flux standards.

And how do we know the flux of these WDs relative to their flux at 5556 A?
By using model WD spectra.

Which models do we use to set the relative flux of the 3 WD standards?
The ones determined by fits to their Balmer lines.



Schaeuble et al. (2019)

Measures

— Continuum LOS
— Emission LOS
— Absorption LOS
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The White Dwart Photosphere Experiment

\/l easures Across a range of n, during each experiment.
22553
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Analysis o

Transmission

[ z2553 data (¢ = 20 ns)
- —— XENO line profile fit
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Line fits to absorption spectra.
These are used to extract 7, values.

"the WDPE absorption spectra reveals
trends similar to those observed in stellar spectra
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Hp and Hy 7, values differ by ~30%.

Schaeuble et al. (2019)



Analysis of the WDPE absorption spectra reveals
trends similar to those observed in stellar spectra
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The White Dwarf Gas Cell in Chamber




The White Dwarf Gas Cell Post Shot 4



Hydrogen data at higher densities can more easily test

theories of line shapes and occupation probability
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Hydrogen data at higher densities can more easily test
theories of line shapes and occupation probability

Previous data at higher densities *
showed larger disagreement 1007
among theories. :
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Achieved higher n, in H at 10 mm line of sight

Increased pressure (from 10 Torr to 25 Torr) and
Decreased window thickness (from 1.4 um to 0.7 um)
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Fits to HP suggest n, > 101 cm3
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Acquired first PDV results 2.5 weeks ago

Beat Frequency

Interferometry Allows us to Infer
Electron Density .

B
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Results indicate n, near 10'® cm
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Light from pinch is used to backlight plasma in cell

Dual core fiber allows
direct measurement

Long fiber delays of backlighting signal
light and directs it

into cell

— Continuum LOS
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Light from pinch is used to backlight plasma in cell

Long fiber delays
light and directs it

into cell Dual core fiber allows
direct measurement
of backlighting signal
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Pinch light successfully fielded as backlight for absorption spectrum

Wavelength (A)

Backlight signal
attenuated by
H absorption

Absorption
Spectrum
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Pinch light successfully fielded as backlight for absorption spectrum

Backlight signal
attenuated by
H absorption

Absorption
Spectrum



Hydrogen absorption measured with backlight
from z pinch
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Naive application shows attenuated spectrum
brighter than backlight spectrum
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Spectral lines from lens are removed ~ well in
resulting transmission spectrum
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Spectra can be scaled based on early-time data
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Occupation probability prescription matters

Intensity (Area Normalized)
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Simulation of Stark-broadened Hydrogen Balmer-line Shapes for DA White Dwarf
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What happens to E levels when an ion gets close:
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