
Supplementary Material for:
The Evaluation and Calibration of Epistemic Uncertainty

Estimates

A. ADDITIONAL EXPERIMENTS

In Section 5.3, we created calibration datasets that resembled the evaluation datasets to evaluate our EU
estimators. Since we cannot guarantee that this will hold in practice, in this section, we present two modifi-
cations to the toy data experiments from Section 5.3 in order to explore the effectiveness of calibration when
the calibration datasets differ from the evaluation datasets.

A.1. Modification 1: Different Calibration Circles

For this experiment, we carve three large circles instead of twelve small circles in the calibration dataset, as
shown in Fig. 1. Note that this also results in the calibration dataset having fewer points removed than the
evaluation dataset. Also, note that due to there being only three circles, we can only choose three of the
ratios used to carve the circles from the evaluation datasets.

In the top half of Table 1, we display the evaluation metrics, averaged over the six seeds. The results are
very similar to the results from Section 5.3; one difference is that the standard deviation of ρepi for ÊM is
lower. From Fig. 4, we see that the calibration curve for ÊE looks almost identical to the corresponding curve
from Section 5.3. On the other hand, the curves for ÊM look slightly different in that the yellow calibrated
ÊM curve slightly overestimates the accuracy gain in the middle intervals. These results suggest when the
shapes carved out in the evaluation and calibration datasets differ, the performance of ÊM may decrease;
however, in both cases, creating the calibration datasets helps improve the EECE of ÊM. The performance
of ÊE appears to be less sensitive to a mismatch in the shape of the region carved out.

A.2. Modification 2: High Aleatoric Uncertainty

In our experiments on toy and real data, we found that in general, ÊE was the superior EU estimator: it has
a higher epistemic correlation, and results in lower EECE after calibration. The only advantage that ÊM has
is that its uncalibrated estimates are useable as direct estimators of EU. In this section, we show that in the
presence of aleatoric uncertainty, the performance of ÊE can decrease.

For this experiment, of the twelve circles we carve out, half of them do not have many points removed. For
the circles where we did not remove many points, we only include test points on the boundary of the two
classes, which are the points with high aleatoric uncertainty. However, the calibration datasets are created
as normal: Dtest,2 are uniformly sampled from each ball. This setup is visualized in Fig. 3.

From the bottom half of Table 1, we observe that the epistemic correlation of ÊE is decreases on Dtest, and ÊM
is comparatively better. From Fig. 4, we see that the calibrated EU for ÊE overestimates the true accuracy
gain for the higher intervals, so the calibrated EECE is higher than the EECE of ÊM. This is because in
the regions of high aleatoric uncertainty without many points removed, ÊE still assigns high EU to the test
points because they lie on the boundary between the two classes; ÊM correctly estimates the EU of these
points to be small, so its calibrated EECE does not deteriorate. Although the performance of ÊE decreases
overall, it still is able to estimate the EU for the lower intervals properly after calibration.

SAND2022-14375CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

B. TRAINING THE LARGE SCALE GAUSSIAN PROCESS CLASSIFIER

We use the GPyTorch implementation1 of Wenzel et al., 2019. We use the squared exponential kernel:

k(x1,x2) = σ2 exp
(

1

2l
||x1 ´ x2||2

)
.

The large scale Gaussian process classifier has several hyperparameters:

• The number of inducing points
• The initial guess for the inducing point locations
• The initial guess of the kernel parameters

We initialize the kernel parameters with σ2 = 0.4805, l = 0.2, which are the default values from the GPyTorch
tutorial. The number of inducing points should be large enough to produce a good approximation, but small
enough to make computation times reasonable. We use 2500 inducing points for the toy data experiments, and
2000 inducing points for the real data experiments. We initialize the inducing point locations by randomly
sampling points from the training data. In addition, there are also several optimization hyperparameters:

• The number of epochs
• The batch size
• The initial step sizes

The large scale GP classifier implementation uses two optimizers: natural gradient descent for learning the
inducing point locations and variational parameters, and Adam for learning the kernel parameters. We set
the initial step sizes to be 0.025 and 0.01, respectively. For the toy data, we train for 150 epochs; for the
real data, we train for 250 epochs. These numbers were picked to ensure that the loss curve indicates a local
minimum is reached. We found that the batch size should be set to as large as possible in order to improve
optimization. We set the batch size to 17,264, which is the maximum we were able to set without running
into out-of-memory errors. Training was done on one compute node with a CUDA 11.2.2 GPU.

C. DETAILS ON CREATING THE DATASETS

C.1. Pseudocode for the Data Splitting Procedure

Algorithm 1: train_test_aug_split Procedure
1 given dataset D = t(xi, yi)u

N
i=1, number of balls to carve out M , radius size R, ratios pj , qj for

j P t1, . . . ,Mu;
2 initialize Icarve = [1, 2, . . . , N], Itrain = [], Iadd = [], Itest = [];
3 for j = 1 to M do
4 c Ð get_ball_center(j, ...);
5 Iball Ð ti P Icarve : }xi ´ c} ă Ru;
6 Icarve Ð IcarvezI ball;
7 Iball_train, Iball_test Ð train_test_split(Iball, pj);
8 Iball_train, Iball_add Ð train_test_split(Iball_train, qj);
9 Itrain Ð Itrain Y Iball_train;

10 Iadd Ð Iadd Y Iball_add;
11 Itest Ð Itest Y Iball_test;
12 end
13 Dtrain Ð t(xi, yi) P D : i P Icarve Y Itrainu;
14 Daug Ð Dtrain Y t(xi, yi) : i P Iaddu;
15 Dtest Ð t(xi, yi) P D : i P Itestu;
16 return Dtrain,Daug,Dtest

1https://docs.gpytorch.ai/en/latest/examples/04_Variational_and_Approximate_GPs
/PolyaGamma_Binary_Classification.html 2

Algorithm 1 is the procedure we use to create Dtrain, Dtest, and Daug from a given dataset D for each of our
experiments. It on the following sub-procedures:

• train_test_split is a function that takes in a set and a ratio p and returns two sets with the first set
having p% of the elements and the second set having the remaining elements.

• get_ball_center is a function that returns the center of the region to carve out in each iteration. We
implement it differently for the toy data and the real data.

C.1.1 get_ball_center Pseudocode

On the toy data, get_ball_center simply returns a ball center from a prespecified list of locations:

Algorithm 2: get_ball_center Procedure for Toy Data
1 given dataset D = t(xi, yi)u

N
i=1, ball centers c1, . . . , cM , iteration number j;

2 return cj

On the real data, get_ball_center randomly samples K available points and returns a point that contains
roughly L neighbors within radius R:

Algorithm 3: get_ball_center Procedure for Real Data
1 given dataset D = t(xi, yi)u

N
i=1, available indices Icarve, desired number of neighbors L, number of

samples K, radius size R;
2 sample i1, . . . , iK from Icarve without replacement;
3 ni Ð |tm P I : }xi ´ xm} ă Ru| for i P ti1, . . . , iKu;
4 J Ð ti P ti1, . . . , iKu : ni ď Lu;
5 i˚ Ð arg maxiPJ ni;
6 return xi˚

C.2. Pseudocode for Section A.2 Experiment

We use a slightly different train_test_aug_split procedure for the experiment from Section A.2. We
need modify the step where we add the test data, since we want some of the points to have high aleatoric
uncertainty. We add a new input to the algorithm: a Boolean value for each ball to carve that determines
whether or not the test data for that ball will have high aleatoric uncertainty. We present the Pseudocode
in Algorithm 4.

In Algorithm 4, knn(D,x) is a function that returns the labels of the six nearest neighbors to x in D. For
a given ball to carve out, to determine which test points to add, if Aj is set to True, we remove all points
from Iball,2 whose neighbors do not have sufficient disagreement; that is, there are 5 or more members of the
same class. Otherwise, we uniformly subset from Iball,2. Also, note that we split the data in the first step,
reserving 7/8 of the data for to add to the test data. Because of this, when we generate the data, we sample
eight times more data than in the regular toy data experiments.

C.3. Algorithm Parameters for Each Experiment

We list the arguments used in Algorithms 1, 2, 3 and 4 to create the evaluation and calibration datasets for
each experiment in Tables 2 and 3. The parameters M , R, p and q are selected so that:

• Dtrain is large enough that the estimate of the kernel parameters in the large scale GP does not change
significantly from Daug.

• There is variety in how much data is subsetted, so that in some regions, Daug improves the prediction
significantly over Dtrain, while in other regions, there is not much improvement.

• Dtest is sufficiently large so that we can see whether there is a trend in how the accuracy gain changes
versus estimated EU value.

For the real datasets, L is smaller for EMNIST because it has fewer observations than K-49, so we cannot3

remove as many points. We set K to be larger when creating the calibration datasets because after subsetting
the data, we need to search longer to find data-rich regions. We display the resulting dataset sizes in Table
4, where we give the average and standard deviation of the sizes over the six seeds.

Algorithm 4: train_test_aug_split Procedure with High Aleatoric Uncertainty Test Data
1 given dataset D = t(xi, yi)u

N
i=1, number of balls to carve out M , radius size R, ratios pj , qj , high

aleatoric uncertainty determiners Aj for j P t1, . . . ,Mu;
2 initialize Icarve = [1, 2, . . . , N], Itrain = [], Iadd = [], Itest = [];
3 Ireserve, Icarve Ð train_test_split(Icarve, 0.875);
4 for j = 1 to M do
5 c Ð get_ball_center(j, ...);
6 Iball Ð ti P Icarve : }xi ´ c} ă Ru;
7 Icarve Ð IcarvezI ball;
8 Iball_train,_ Ð train_test_split(Iball, pj);
9 Iball_train, Iball_add Ð train_test_split(Iball_train, qj);

10 Itrain Ð Itrain Y Iball_train;
11 Iadd Ð Iadd Y Iball_add;
12 Iball,2 Ð ti P Ireserve : }xi ´ c} ă Ru;
13 if Aj then
14 yi1, . . . , yi6 Ð knn(D,xi) for i P Iball,2;
15 Iball_test Ð ti P Iball,2 : 2 ď yi1 + ¨ ¨ ¨ + yi6 ď 4u;
16 else
17 Iball_test,_ Ð train_test_split(Iball,2, 0.035)
18 end
19 Itest Ð Itest Y Iball_test;
20 end
21 Dtrain Ð t(xi, yi) P D : i P Icarve Y Itrainu;
22 Daug Ð Dtrain Y t(xi, yi) : i P Iaddu;
23 Dtest Ð t(xi, yi) P D : i P Itestu;
24 return Dtrain,Daug,Dtest

4

Figure 1: Toy Data, Modification 1

Figure 2: Average Epistemic Uncertainty for each Interval on Toy Data, Modification 1

Figure 3: Toy Data, Modification 2

Figure 4: Average Epistemic Uncertainty for each Interval on Toy Data, Modification 2
5

Table 1: Evaluation Metrics on Modified Toy Data

Method ρepi EECE Calib. EECE

Mod. 1
ÊM 0.098 ˘ 0.013 0.0271 ˘̆̆ 0.005 0.0180 ˘ 0.004
ÊE 0.122 ˘̆̆ 0.024 0.391 ˘0.006 0.0154 ˘̆̆ 0.0027

Mod. 2
ÊM 0.064 ˘̆̆ 0.01 0.0214 ˘̆̆ 0.003 0.0114 ˘̆̆ 0.0017

ÊE 0.034 ˘ 0.011 0.56 ˘ 0.011 0.0234 ˘ 0.003

Table 2: Algorithm Inputs for Toy Data

Parameter Reg. Reg. (Calib.) Mod. 1 Mod. 1 (Calib.) Mod. 2 Mod. 2 (Calib.)

M 12 12 12 3 12 12
R 0.55 0.55 0.55 1.7 0.55 0.55

p

[0.08, 0.08, 0.08, [0.08, 0.08, 0.08, [0.08, 0.08, 0.08,

[0.08,0.12,0.16]

[0.06, 0.06, 0.06, [0.06, 0.06, 0.06,
0.08, 0.12, 0.12, 0.08, 0.12, 0.12, 0.08, 0.12, 0.12, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06,
0.12, 0.12, 0.2, 0.12, 0.12, 0.2, 0.12, 0.12, 0.2, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7,
0.2, 0.24, 0.24] 0.2, 0.24, 0.24] 0.2, 0.24, 0.24] 0.7, 0.7, 0.7] 0.7, 0.7, 0.7]

q

[0.225, 0.225, 0.225, [0.225, 0.225, 0.225, [0.225, 0.225, 0.225,

[0.225,0.225,0.225

[0.225, 0.225, 0.225, [0.225, 0.225, 0.225,
0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225,
0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225,
0.225, 0.225, 0.225] 0.225, 0.225, 0.225] 0.225, 0.225, 0.225] 0.225, 0.225, 0.225] 0.225, 0.225, 0.225]

c

[(-1, -1), (0.2, -1), [(-1, 2.6), (0.2, 2.6), [(-1, -1), (0.2, -1), [(-1, -1), (0.2, -1), [(-1, 2.6), (0.2, 2.6),
(1.4, -1), (2.6, -1), (1.4, 2.6), (2.6, 2.6), (1.4, -1), (2.6, -1), [(-0.6, 3.8), (1.4, -1), (2.6, -1), (1.4, 2.6), (2.6, 2.6),
(-1, 0.2), (0.2, 0.2) (-1, 3.8), (0.2, 3.8) (-1, 0.2), (0.2, 0.2) (1.4, 3.8), (-1, 0.2), (0.2, 0.2) (-1, 3.8), (0.2, 3.8),

(1.4, 0.2), (2.6, 0.2), (1.4, 3.8), (2.6, 3.8), (1.4, 0.2), (2.6, 0.2), (3.4, 3.8)] (1.4, 0.2), (2.6, 0.2), (1.4, 3.8), (2.6, 3.8),
(-1, 1.4), (0.2, 1.4), (-1, 5), (0.2, 5), (-1, 1.4), (0.2, 1.4), (-1, 1.4), (0.2, 1.4), (-1, 5), (0.2, 5),
(1.4, 1.4), (2.6,1.4)] (1.4, 5), (2.6,5)] (1.4, 1.4), (2.6,1.4)] (1.4, 1.4), (2.6,1.4)] (1.4, 5), (2.6,5)]

A – – – –

[False, False, False,

–
False, False, False,
True, True, True,
True, True, True]

Table 3: Algorithm Inputs for Real Data

Parameter EMNIST EMNIST (Calib.) K-49 K-49 (Calib.)

M 16 16 16 16
R 6.5 6.5 6 6

p

[0.04, 0.04, 0.04, 0.0,4 [0.04, 0.04, 0.04, 0.04, [0.1, 0.1, 0.1, 0.1, [0.1, 0.1, 0.1, 0.1,
0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2,
0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3,
0.16, 0.16, 0.16, 0.16] 0.16, 0.16, 0.16, 0.16] 0.4, 0.4, 0.4, 0.14] 0.4, 0.4, 0.4, 0.4]

q

[0.225, 0.225, 0.225,0.225, [0.225, 0.225, 0.225, 0.225, [0.225, 0.225, 0.225, 0.225, [0.225, 0.225, 0.225, 0.225,
0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225, 0.225,
0.225, 0.225, 0.225, 0.225] 0.225, 0.225, 0.225, 0.225] 0.225, 0.225, 0.225, 0.225] 0.225, 0.225, 0.225, 0.225]

L 1100 1100 2400 2400
K 500 1000 500 1000

6

Table 4: Dataset Sizes

Dataset Dtrain Dtrain,2 Dtest Dtest,2 Daug Daug,2

Toy (Reg) 112557 ˘ 38 83565 ˘ 42 6538 ˘ 9 6528 ˘ 4 135050 ˘ 9 106028 ˘ 39
Toy (Mod. 1) 112578 ˘ 47 90984 ˘ 65 6533 ˘ 10 4860 ˘ 6 135055 ˘ 10 107717 ˘ 50
Toy (Mod. 2) 121441 ˘ 117 100134 ˘ 97 8952 ˘ 233 6320 ˘ 4 138423 ˘ 23 117152 ˘ 112

EMNIST 116834 ˘ 39 100584 ˘ 107 3329 ˘ 9 3312 ˘ 15 128269 ˘ 9 111964 ˘ 57
K-49 244175 ˘ 91 217309 ˘ 207 6023 ˘ 21 6052 ˘ 29 264890 ˘ 21 238123 ˘ 114

7

	ADDITIONAL EXPERIMENTS
	Modification 1: Different Calibration Circles
	Modification 2: High Aleatoric Uncertainty

	TRAINING THE LARGE SCALE GAUSSIAN PROCESS CLASSIFIER
	DETAILS ON CREATING THE DATASETS
	Pseudocode for the Data Splitting Procedure
	get_ball_center Pseudocode

	Pseudocode for Section A.2 Experiment
	Algorithm Parameters for Each Experiment

