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4 Problem Definition

We observe univariate X1 ∼ F1, X2 ∼ F2, . . . in a stream

F1, F2, . . .

vary through time. At each time t ≥ 1, we want to estimate the

0 < q1 < q2 < · · · < qK < 1

quantiles of Ft
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5 Motivating Applications

Detecting Malicious Activity in a
Stream of Computer Network
Data

• Multivariate points in the
stream of network data
XXX1,XXX2, . . . are converted via
feature engineering to a
discriminative 1d stream
X1, X2, . . . as in (Barata, 2021)

• Raises in the .9 quantile
without changes in the .85
quantile could indicate a
small group of machines
with a common
characteristic have become
infected

• Quantile tracking also
indicates prevalence of the
attack

Figure: Red line is .86 quantile. Blue
line is .99 quantile
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6 Motivating Applications

Monitoring for Oil Price Shocks
over Days

• Changes in the .9 quantile
of world oil prices without
changes in the .99 quantile
indicates that oil producing
nations that had expensive
prices became more
expensive but the countries
with the most costly oil still
had the most costly oil

• Useful for quantile quantile
regression as in Barata
(2021)

Figure: Time Series of BRENT Crude
oil Dollars Per Barrel
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7 Prior Work
• Dynamic point estimation of many quantiles that is order
preserving is well studied in Barata (2021) and Barata (2021)

• Basic idea is update rule such as

Q̂q(n+ 1) =

{
(1 + λq)Q̂q(n) Xn > Q̂q(n)
(1− λ(1− q))Q̂q(n) Xn ≤ Q̂q(n)

• Extension to multiple quantiles via rules that constrain the
order on the estimates

• Consistency in iid setting is proved: If F1 = F2 = · · · = F, then
in probability if Qq = F−1(q) > 0, and Qq(0) > 0

lim
nλ→∞,λ→0

Q̂q(n) = Qq

• In the non-dynamic setting F = F1 = F2 = . . . , frequentist
approaches have worked out asymptotically valid interval
estimation for a wide range of distributions Barata (2021),
Barata (2021), Barata (2021)

• These methods are inherently unable to adapt to change
because they weight each member of the sample equally
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8 Prior Work

• Dynamic credible interval construction for a single quantile
is also well studied Barata (2021)

• This work suffers from a stochastic ordering violation
• The model can be fit to 2 quantiles separately but if estimating
quantiles q1 and q2 where q1 < q2 it is possible there will be
a c ∈ R s.t P(Q1t > c|X1, . . . , Xt) > P(Q2t > c|X1, . . . , Xt)

• This type of contradiction is likely to occur when estimating
extreme low quantiles
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10 General Framework: HMM
We will approach the dynamic many quantile estimation problem
using a hidden markov model structure as well. Recall we seek to
estimate the 0 < q1 < · · · < qK < 1 quantiles of Ft for each t. We
propose the following model
Initial Distribution

QQQ0 = (Q10, . . . ,QK0) ∼ G0
where G0 is some to be determined parametric family of
distributions on {(x1, . . . , xK)| −∞ < x1 < x2 < · · · < xK < ∞}.
And for t ≥ 1
Transition Distribution

QQQt|QQQt−1 ∼ G(qqqt−1,VVVt)
where G is some to be determined parametric family of
distributions on {(x1, . . . , xK)| −∞ < x1 < x2 < · · · < XK < ∞}
parameterized by the underlying quantile vector at time t − 1 and
a vector of parameters dictating the variance of transition at time
t denoted by VVVt
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11 General Framework: HMM

Emission Distribution

Xt|QQQt ∼ Histq1,...,qK (QQQt, st, et)

where Histq1,...,qK (QQQt, st, et) is the distribution coming from the
family

F(q1,...,qK ) = {Histq1,...,qK (QQQ, s, e) = p(x|QQQ, s, e)

= q1(s ∗ exp(−(q1 − x)s)I(x < Q1)+

K−1∑
i=2

(qi − qi−1)I(Qi ≤ x < Qi+1)
1

Qi − Qi−1

+(1 − qk)I(x ≥ QK)(e ∗ exp(−(x − qM−1)e))|∞ < Q1 < · · · < QK , s > 0, e > 0}

(1)
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12 Constraints

The following 3 constraints allow this work to build upon what
has already been done

• Order preservation
• Consistent estimation
• Adaptable

Wednesday 12th October, 2022



13 Constraints: Order Preservation

Constraint
Order Preserving Estimation: For each time t ≥ 0 the marginal
filter distributions should be stochastically ordered. In other
words p(Q1t|X1 = x1, . . . , Xt−1 = xt−1) � · · · � p(QKt|X1 =
x1, . . . , Xt−1 = xt−1)
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14 Constraints: Consistent Estimation

Constraint
Consistent in iid Circumstances For every F, if F1 = F2 = · · · = F, i.e
if the stream is truly an iid stream possessing true quantiles
Q1 = F−1(q1), …QK = F−1(qk), then for 1 ≤ k ≤ K and every ε > 0

lim
t‖VVVt‖→∞,‖VVVt‖→0

p(|Qkt − Qk| > ε|X1 = x1, . . . , Xt−1 = xt−1) = 0
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15 Constraints: Adaptable

Constraint
Fast Adaptation In practice we require VVVt to not tend to zero so
that adaptation to distributional change is possible. At least, we
must empirically verify fast adaption to change for non-varying VVV.
Ideally we can specify a deterministic algorithm for dynamically
varying VVVt that maintains consistency but allows adaptation as in
Barata (2021).
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16 Specific Model Under Analysis
This model maintains the (1/K, 2/K, . . . , (K − 1)/K) quantiles in a
transformed space that allows for multivariate normal transitions
Let aaat = (a1t,a2t, . . . ,a(K−1)t, αt, βt) for t ≥ 1. Also define for t ≥ 1.

Q1t(aaat) = a1t
and for 2 ≤ j ≤ K − 1

Qjt(aaat) = a1t +
j∑

t=2

exp(ajt)

and
s(aaat) = exp(αt)

and
e(aaat) = exp(βt)

In the “a” space, the first dimension is the 1/K quantile, the
second dimension is the log of the difference between the 2/K
and 1/K quantile, the third dimension is the log of the difference
between 3/K and 2/K quantile, and so on.Wednesday 12th October, 2022



17
Transition Distributions: Specification of G
aaat|aaat−1 ∼ MVN(aaat−1,Σt) where Σt is K + 1× K + 1 diagonal and

Var(aaa1t|aaa1(t−1)) = σ2
L (t)

and for 2 ≤ j ≤ K − 1

Var(aaajt|aaaj(t−1)) = ζ(t, K)

and
Var(αt|αt−1) = Var(βt|βt−1) = σ2

B(t)

Note in this model that VVVt := (σ2
L (t), ζ(t, K), σ2

B(t))
Initial Distribution: Specification of G0
aaa1 ∼ MVN(

[
0, c, c, . . . c,d,d

]T
,Σ0). Σ0 is diagonal; the first entry is

σ2
L (0). The last two entries are σ2

B(0). The other diagonal entries
are ζ(0, K)
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18 Simulations

Figure: Quantiles over a standard
Normal. Figure: Quantiles over a

t-distribtution.
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20 Conclusions

• We have built a flexible framework for modeling multiple
quantiles for streaming data.

• Simulated streaming data using an example model class
shows promise in using this method for detecting anomalies.

• Regulatory conditions are needed to ensure the estimated
quantile function is proper along the stream.

• Establishing posterior consistency for the dynamic setting
requires focus on the iid setting which is currently in
progress.

• Once esatblished, will focus on credible intervals of the
quantiles can be used to do anomaly detection with risk
quantification.
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