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4 I Problem Definition

We observe univariate X; ~ F1,Xa ~ Fo,... in a stream
Fi,Fo,...
vary through time. At each time t > 1, we want to estimate the
0<g1<@a<---<qgg<l1

quantiles of F;
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5 I Motivating Applications
Detecting Malicious Activity in a
Stream of Computer Network |

Data

. Multivariate points in the
stream of network data |
X1,Xa,... are converted via
feature engineering to a
discriminative 1d stream
X1,Xq,... asin (Barata, 2021)

. Raises in the .9 quantile ‘
without changes in the .85
quantile could indicate a
small group of machines
with a common
characteristic have become |
infected
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Detecting Malicious Activity in a
Stream of Computer Network

Data |

. Multivariate points in the
stream of network data |
X1,Xa,... are converted via
feature engineering to a
discriminative 1d stream \
X1,X2,... asin (Barata, 2021) -

. Raises in the .9 quantile ‘
without changes in the .85
quantile could indicate a
small group of machines
with a common
characteristic have become Figure: Red line is .86 quantile. Blue
infected line is .99 quantile
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6 I Motivating Applications

Monitoring for Oil Price Shocks
over Days

. Changes in the .9 quantile |
of world oil prices without |
changes in the .99 quantile
indicates that oil producing
nations that had expensive
prices became more
expensive but the countries ‘
with the most costly oil still
had the most costly oil

. Useful for quantile quantile |
regression as in Barata
(2021) |
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preserving is well studied in Barata (2021) and Barata (2021)
. Basic idea is update rule such as

. (14 2q)Qq(n) Xn > Qq(n)
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. Dynamic point estimation of many quantiles that is order
preserving is well studied in Barata (2021) and Barata (2021)
. Basic idea is update rule such as

A (14 Aq)Qq(n) Xp > Qq(n)
Qq(n+1)= . -
? {(1 ~ ML= q))Qq(n) Xy < Qq(n)
. Extension to multiple quantiles via rules that constrain the
order on the estimates

. Consistency in iid setting is proved: If F; = F, = --- = F, then
in probability if Qg = F~1(q) > 0,and Qq(0) >0

lim  Qq(n) = Qq

NA—00,A—0
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. Inthe non-dynamic setting F = F; = F, = ..., frequentist
approaches have worked out asymptotically valid interval
estimation for a wide range of distributions Barata (2021),
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. Basic idea is update rule such as
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in probability if Qg = F~1(q) > 0,and Qq(0) >0
lim  Qq(n) = Qq

nA—o0,A—0

. Inthe non-dynamic setting F = F; = F, = ..., frequentist
approaches have worked out asymptotically valid interval
estimation for a wide range of distributions Barata (2021),
Barata (2021), Barata (2021)

. These methods are inherently unable to adapt to change
Wednesday 121 octopdd BGAUSE they weight each member of the sample equally



8 I Prior Work

. Dynamic credible interval construction for a single quantile
is also well studied Barata (2021)

. This work suffers from a stochastic ordering violation

. The model can be fit to 2 quantiles separately but if estimating
quantiles g; and go where gy < gs it is possible there will be
aceRst P(Qlt > C|X1, Ce ,Xt) > P(Qgt > C|X1, o ,Xt)

. This type of contradiction is likely to occur when estimating
extreme low quantiles
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@ our Approach: General Framework, Constraints, and Current
Model
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10 I General Framework: HMM

We will approach the dynamic many quantile estimation problem
using a hidden markov model structure as well. Recall we seek to
estimate the 0 < g1 < -+ < gk < 1 quantiles of F; for each t. We |
propose the following model

Initial Distribution |

Qo = (Q10,---,Qko) ~ Go '
where Gq is some to be determined parametric family of
distributions on {(x1,...,Xk)| — 00 < X1 < X2 < -+ < Xk < 00}
And fort > 1 ‘
Transition Distribution

Q:|Qt-1 ~ G(qt—1,V4) :
where G is some to be determined parametric family of
distributions on {(x1,...,Xk)| —00 < x3 < Xg < -+ < Xk < 00} |
parameterized by the underlying quantile vector at time t — 1 and
wednedtay@CtRE@Bparameters dictating the variance of transition at time



1 I General Framework: HMM

Emission Distribution

Xt|Qt ~ Histq, .. q,(Qt,St, et)

where Histg, . .(Qt,St, et) is the distribution coming from the
family

Fay,..., ) = {Histqy,..., qc(Q,s,e) = p(x|Q,s, e)
= g1(s* exp(—(q1 — x)s)I(x < Q1)+

1 (1)

Q —Qi

K—1

> (@ —ai—)IQ < X < Qipy)
i=2

+(1 — gp)l(x > Qx)(exexp(—(Xx — gm—1)e))|oo < Q1 < -+ < Q,s > 0,e >0}
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1 I Constraints

The following 3 constraints allow this work to build upon what
has already been done

. Order preservation
. Consistent estimation
. Adaptable
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13 I Constraints: Order Preservation

Constraint

Order Preserving Estimation: For each time t > 0 the marginal
filter distributions should be stochastically ordered. In other
words p(Qut|X1 = X1, ..., Xe—1 = Xe—1) = -+ 2 p(Qe| X1 =

Xilgooo ,Xt,1 = thl)
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i I Constraints: Consistent Estimation

Constraint

Consistent in iid Circumstances Forevery F, if i =Fy =---=F, i.e
if the stream is truly an iid stream possessing true quantiles
Q1 = FY(q1), ...Qx = F~1(qy), then for 1 < kR < K and every e > 0

P(|Qrt — Qr| > €[X1 = X1,..., Xt—1 =Xt—1) =0

im
t[|Vel|—= o0, [|Ve[|—0

Wednesday 121" October, 2022



1 I Constraints: Adaptable

Constraint

Fast Adaptation In practice we require V to not tend to zero so
that adaptation to distributional change is possible. At least, we
must empirically verify fast adaption to change for non-varying V.
Ideally we can specify a deterministic algorithm for dynamically
varying V; that maintains consistency but allows adaptation as in
Barata (2021).
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16 I Specific Model Under Analysis

This model maintains the (1/K,2/K,...,(K —1)/K) quantilesin a
transformed space that allows for multivariate normal transitions
Let ar = (ait, Qat, - - -, Ak—1yt, out, Br) for t > 1. Also define for t > 1.

Qit(ar) = ane
andfor2<j<K-1

j
Qi(a@) = aie+ Yy exp(ay)

t=2
and
s(ar) = exp(at)
and
e(ar) = exp(p)
In the “a” space, the first dimension is the 1/K quantile, the
second dimension is the log of the difference between the 2/K
and 1/K quantile, the third dimension is the log of the difference
wednefym it dareB2/® and 2/K qguantile and so on.




! Tlansition Distributions: Specification of G
ag|ai—; ~ MVN(a¢—1, %) where 3; is K+ 1 x K+ 1 diagonal and

Var(ay|ay 1)) = o7 (t)
andfor2 <j<K-1
Var(aj|aj—1)) = ¢(t,K)

and
Var(at|at 1) = Var(ﬁt|/8t 1) U%(t)

Note in this model that V; := (a(t), ¢(t, K), o3(t))
Initial Distribution: Specification of G

a; ~ MVN([0,c,c,...c,d, d]T ,¥0). Yo is diagonal; the first entry is
o2(0). The last two entries are 02(0). The other diagonal entries
are ¢(0,K)
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18 I Simulations
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18 I Simulations

Figure: Quantiles over a standard
Normal.
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19 I Outline

© conclusions
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20 I Conclusions IEI:

. We have built a flexible framework for modeling multiple |
quantiles for streaming data.

. Simulated streaming data using an example model class |
shows promise in using this method for detecting anomalies.

. Regulatory conditions are needed to ensure the estimated
quantile function is proper along the stream.

. Establishing posterior consistency for the dynamic setting
requires focus on the iid setting which is currently in ‘
progress.

. Once esatblished, will focus on credible intervals of the ,
quantiles can be used to do anomaly detection with risk |
guantification. |
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