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Complex Mechanical Behavior 
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• Strain rate, pressure and 
temperature dependent

• Damage mechanisms depend on
• Particle
• Binder
• Interaction between the two
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• Role of particle morphology and 
strength on damage accumulation? 
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Modeling Efforts
• Collaborators are 

modeling 
complex 
phenomena of 
these particle 
polymer 
composites

All figures on slide from Brown, J., et al. No. 
SAND 2022-7768C. Sandia National Lab.(SNL-
NM) 2022.



Materials

• Inert crystalline particles with a 
wide variety of morphology

• Silica sand, caster sugar, 
sodium chloride

• Sylgard 184®
• Two part 

polydimethylsiloxane (PDMS)
• Well characterized
• Can accept many particle 

systems
• Easily varied mechanical 

properties

Polymer Particles

Control of these two materials allows for parametric study of dynamic 
material behavior
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Composite Fabrication

7/16” bolts
¼” bolts

Bottom plate
025 o-rings
Middle plate

PEEK pistons
Stainless pistons

Top plate

7/16” nuts
½” driver bolts

• Manufacturing method to create uniform 
heterogenous composites

• Involves degassing of constituents and curing in 
elevated temperature and pressure environment

• Careful control of manufacturing process needed for 
consistent mechanical response

D = 25.5±0.05 mm H = 22.1±0.05 m
m

Total Weight = 21.1±0.5 g
80% wt particle

• Polymer Cure Parameters
• ASTM D618 (Conditioning for 

plastics) 
• ASTM D695 (Compressive 

Properties Of Rigid Plastics) 
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Particle Characterization

Shape

• Influence of particle 
characteristics on 
composites

Silica Sand
Diameter on 

cumulative % (μm)
10% 243
50% 324
90% 458

Sieved Sodium Chloride
Diameter on 

cumulative % (μm)
10% 362
50% 479
90% 670
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Silica, CAS# 14808-60-7
GFS Chemicals
Silica sand 50-70 mesh

Sodium Chloride, 
CAS# 7647-14-5

Particle size distribution 
measured with LA-960V2 Horiba 
Particle Size Analyzer at the 
Materials Characterization Facility

Optical images of particles using Olympus 
DXS 500 optical microscope



Constituent Strength Characterization

Particle Fracture 
Strength
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• Particle agglomerate strength measured 
using method detailed in Adams et al. 
(1994)

Particle Agglomerate Strength

Test Silica Sand Strength 
(MPa)

Sodium Chloride 
Strength (MPa)

1 365.5 22.9

2 232.1 26.5

3 309.5 26.8

4 295.9 25.0

5 281.1 24.5

6 363.2 20.6

Average 323.1±69.7 24.4±4.7

Sylgard Stiffness

Test Stiffness (MPa)

1 2.27
2 2.52
3 2.17
4 2.14

Average 2.28±0.21



Volumetric Characterization
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Silica Sand Composite

Constituent Lab 
Measurement Micro-CT

Volume 
Fraction

Voids 6.4±0.4% 7.2±3.3%
Binder 34.4±1.4% 36.7±3.9%
Particle 59.3±1.7% 56.2±4.4%

Mass Fraction
Binder 18.4±0.3% 20.3±2.4%
Particle 81.6±0.3% 79.7±5.5%

• View heterogeneity of samples 
through micro-CT visualization

• K-means clustering segmentation to 
extract information on mass and 
volume fractions

Sodium Chloride Composite

Constituent Lab 
Measurement Micro-CT

Volume 
Fraction

Voids 13.4±0.7% 11.1±1.8%
Binder 28.9±0.7% 32.4±3.9%
Particle 60.8±1.4% 56.5±3.9%

Mass Fraction
Binder 18.5±0.02% 18.3±2.8%
Particle 81.5±0.02% 81.8±4.7%Silica sand composite

• North Star 
Imaging X50 
micro-CT machine



Quasistatic Response

Q-S Strength

• Composites with 
varying particle 
systems uniaxially 
compressed

• Single compression

Salt

Sand
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Quasistatic Response

Q-S Strength

• Composites with 
varying particle 
systems uniaxially 
compressed

• Cyclic discrete 
compression tests

• Damage observed in 
both samples 

Salt

Sand
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Drop test experiment with 
aluminum impactor.  

Trolley masses: Steel: 4.5 kg, 
Maximum drop height: 165 cm

Dynamic Testing – Drop Test
Impactor velocity measurement system

Picoscope
2408B

High speed 
camera

Delay 
generator 12

4 photodiodes 
and 

photosensors



Elastic deformation to fragmentation 
observed
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Silica Sand Composite

Sodium Chloride Composite

Impact Velocity V: 2.40±0.04 ms-1
Initial Strain Rate 𝜺̇: 122±2 s-1
Impact Energy E: 12.9±0.5 J

V: 2.83±0.09 ms-1
𝜺̇: 139±5 s-1
E: 18.1±1.2 J

V: 3.39±0.08 ms-1
𝜺̇: 169±5 s-1
E: 25.8±1.3 J

V: 2.89±0.07 ms-1
𝜺̇: 134±3 s-1
E: 18.8±0.9 J

V: 2.40±0.06 ms-1
𝜺̇: 118±3 s-1
E: 13.0±0.6 J

V: 2.01±0.02 ms-1
𝜺̇: 92.1±1.1 s-1
E: 9.09±0.14 J



• Higher particle strength filler leads to composite more 
resistant to damage mechanisms
• Quasistatic and dynamic

• Influence of each damage mechanism unknown
• Binder rupture
• Interfacial debonding
• Crystal fracture

Conclusion

14



• Post sample volumetric visualization
• View failure modes after mechanical stimulus 

• Split Hopkinson pressure bar impact 
testing
• Span larger strain rate range
• Extract bulk stress strain data
• High speed imaging to view material 

deformation and fracture

Future work
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Barrel and 
striker bar

Breech

Incident Bar

Transmitted 
bar

Sample

Velocity 
measurement
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Questions?



4 part mold planarity uncertainty

• Quantifying uncertainty in planarity 
assuming single pistons are free to rotate

• Initial assumptions
– tpiston = 0.197 in, measured from steel pistons
– dpiston = 0.998 in, measured from steel pistons
– dmold = 1 in, assumed from reamed holes

• x = 0.01 in in this scenario (10 mils, ±5 mils 
from center)

• For a 1 inch tall sample, this corresponds to 
±0.5% strain measured from center

• Conservative assessment as this does not 
take into account driver bolt flattening the 
piston 

θ

θ

dpiston

tpiston

x

tpiston

dpiston

clearance

clearance

𝜃 = 𝑠𝑖𝑛!"
𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒
𝑡#$%&'(

𝑥 = 𝑑#$%&'( ∗ sin(𝜃)

dmold
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Piston Uncertainty Propagation

• Measured variety of samples using dial indicator on 
mill machine surface

• Worst case samples are ±7.5 mils from average

14 17 27 28 29 30 65 68 74 63 67 71
AVG 7.7 -0.4 1.3 -3.6 1.4 -0.2 -3.5 -2.2 -0.8 0 -0.2 0.8

C -7.7 0.4 -1.3 3.6 -1.4 0.2 3.5 2.2 0.8 0 0.2 -0.8
1 -9.7 -6.6 0.7 -3.4 2.1 2.2 -7.5 1.2 -2.2 3 -0.8 4.2
2 -5.7 -1.6 3.7 2.6 2.1 0.2 1.5 2.2 -6.2 -2 -5.8 -3.8
3 13.3 6.4 -0.3 0.6 -1.4 -1.8 5 -3.8 1.8 -3 3.2 -3.8
4 9.8 1.4 -2.8 -3.4 -1.4 -0.8 -2.5 -1.8 5.8 2 3.2 4.2

Tolerance 13.3 6.6 3.7 3.6 2.1 2.2 7.5 3.8 6.2 3 5.8 4.2
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Thick PEEK Piston
Samples

Thin PEEK Piston Stainless and PEEK Pistons
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20Slide pulled from Dr. Judy Brown’s presentation “The role of pressure-dependent viscoplasticity and volumetric dilatation in energetic 
materials at intermediate strain rates” July 2022   


