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Complex Mechanical Behavior A% | TEXAS A&M

e Strain rate, pressure and * Role of particle morphology and
temperature dependent strength on damage accumulation?
* Damage mechanisms depend on
* Particle
* Binder

* |nteraction between the two

O
A

E:rr:(t,z.ul;l,;,‘:lz;r;;ic;\gz;ill(s\/eu Kosta, Tomislav, and Jesus O. Mares.

Science 19.6 (1984): 1947-1956. Advancement of O;?t/ca/ Mfethods & Digital 3
Image Correlation in Experimental
Mechanics. 2021. 83-88.

Rae, P. J., et al. Proceedings of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences 458.2019 (2002):
743-762.
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Modeling Efforts T | TEXAS AsM

 Collaborators are
I modeling

Undeformed Cracks Crystal Rotation + Pore Opening
(Intra and/or Inter-Crystalline)

complex
phenomena of
these particle

polymer
composites
[ T 5
I Viscoelasticity + Statistical Crack | + Pressure-Dependent
(binder) Mechanics (SCRAM) Plasticity
10
= Model, With Plasticity
- == Model No Plasticity
Tra nsmitter = Data 1-Wave Analysis
Sample bar 30
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All figures on slide from Brown, J., et al. No.
SAND 2022-7768C. Sandia National Lab.(SNL- 0
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Materials TEXAS A&SM

Sylgard 184°
* Two part

polydimethylsiloxane (PDMS)
* Well characterized

. * Inert crystalline particles with a
e (Can accept many particle y P

wide variety of morphology

systems .

Y . . .  Silica sand, caster sugar,
e Easily varied mechanical <odium chloride

properties

Control of these two materials allows for parametric study of dynamic
material behavior
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Composite Fabrication

* Manufacturing method to create uniform

heterogenous composites /D = 25.540.05 mm
* Involves degassing of constituents and curing in |

elevated temperature and pressure environment
e Careful control of manufacturing process needed for

consistent mechanical response
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~ Total Weight =21.1#0.5g
80% wt particle

15" driver bolts
\ 7/16” nuts ’ s
Top plate 3

Stainless plstons

PEEK pistons \

Middle plate
- 025 o-rings
p Bottom plate
4" bolts &

7/16 bolts
Polymer Cure Parameters

1- ASTM D618 (Conditioning for
plastics)

V
« ASTM D695 (Compressive ;
Properties Of Rigid Plastics) { *




Particle Characterization A | TEXAS ASM
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* Influence of particle Silica, CAS# 14808-60-7 - Ff foo
301 >
characteristics on GFS Chemicals E 0 2
. - Sast . R P s
com pOSIteS SIlICa Sand 50-70 meSh E Sand, 210 to 297 micron 70 E
§20F 10 g
Silica Sand E 1 {50 3
Diameter on Z 15t 1o Z
cumulative % (um) 2 i f)
10% 243 % 10t 130 &
50% 324 3 120 2
90% 458 SERN 1o &

0 A 1 1
500 1000 1500 2000
Particle Size (um)

35 ; . : ; 100
190~
Sodium Chloride, <3 Jfr |y
CAS# 7647-14-5 g 25 | %
5 Seived sodium chloride, | /" g
Sieved Sodium Chloride E sl 300 to 500 micron leo &
Diameter on 8 201 =
cumulative % (um) Z 1 ] 1°° =
10% 362 Ell i 1o Z
50% 479 2l 1o 2
90% 670 2 =
S 120 2
st 2
Particle size distribution 110~

measured with LA-960V2 Horiba 0 - s s
Optical images of particles using Olympus Particle Size Analyzer at the 5000 1000+ 15002000

DXS 500 optical microscope Materials Characterization Facility Particle Size (yim)



Constituent Strength Characterization A | TEXAS A&M
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particle Agglomerate Strength e Particle agglomerate strength measured
. . using method detailed in Adams et al.
Test Silica S(vgas)trength SSotcrjel::gthC?l\I/(I)Fr)l:;e (1994)
1 365.5 22.9 "o
2 232.1 26.5 05
3 309.5 26.8
4 295.9 25.0 70
5 281.1 245 %03
6 363.2 20.6 7
Average|  323.1:69.7 24.4+4.7 S 0ot
’ <o | Particle Fracture 0.1t
i © | Strength /
3 00 5 16 1I5 20

= 2t . —X Strain %
s
1} ¢ Cl P6
g Naclp Sylgard Stiffness
z 0
g0 Test Stiffness (MPa)

2f 1 2.27

5 2 2.52

i | = h 3 2.17

o 0.05 0.1 0.15 0.2 4 214

Natural Strain, ln(ho/h) Average 2 28+0.21 8




Volumetric Characterization

* View heterogeneity of samples
through micro-CT visualization
K-means clustering segmentation to
extract information on mass and

Volume Fraction

volume fractions
North Star
Imaging X50
micro-CT machine

0.8
o7 | Silica sand composite
T
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| Binder 1
04x :
R Ca3siseassstsasasses
02+
01ET ] Voids B
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AM TEXAS A&M
UNIVERSITY,
Silica Sand Composite
Constituent Lab Micro-CT
Measurement
Voids 6.4+0.4% 7.2+3.3%
Volume Binder 34.4+14% | 36.7£3.9%
Fraction
Particle 59.3+1.7% 56.2+4.4%
Mass Eraction Binder 18.4+0.3% 20.3+2.4%
Particle 81.610.3% 79.7£5.5%
Sodium Chloride Composite
. Lab .
Constituent Measurement Micro-CT
Voids 13.4+0.7% 11.1+1.8%
Volume Binder 28.9:0.7% | 32.4+3.9%
Fraction
Particle 60.8+1.4% 56.5+3.9%
Mass Eraction Binder 18.5+0.02% 18.3+2.8%
Particle 81.5+0.02% 81.8+4.7%
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Quasistatic Response S

 Composites with
I varying particle
systems uniaxially
compressed
* Single compression

Laa

Pressure (MPa)
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Quasistatic Response S

 Composites with
I varying particle

systems uniaxially
compressed

e Cyclic discrete
compression tests

 Damage observed in
both samples .

wn A W=

Pressure (MPa)

Strain %

Q-S Strength
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Dynamic Testing — Drop Test AJr | TEXAS AsM

Drop test experiment with
aluminum impactor.
Trolley masses: Steel: 4.5 kg,
Maximum drop height: 165 cm
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Elastic deformation to fragmentation E.l.?" TEXAS A&M
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observed

Silica Sand Composite

Impact Velocity V: 2.40+0.04 ms! V: 2.8310.09 ms? V: 3.3910.08 ms?
Initial Strain Rate &: 12212 5! £:139+5s1 £:16915 s1
Impact Energy E: 12.910.5 ) E:18.1+1.2) E:25.8%1.3 )

Sodium Chloride Composite

V:2.01+0.02 ms™! V: 2.40+0.06 ms™ V: 2.89+0.07 ms™!
£:92.1+1.1s1 £:118+3 5! £:134+3 51

E:9.09+0.14) E:13.0+0.6J E:18.810.9)
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Conclusion A | TEXAS ASM

« Higher particle strength filler leads to composite more
I resistant to damage mechanisms
« Quasistatic and dynamic

 Influence of each damage mechanism unknown
« Binder rupture
 Interfacial debonding

* Crystal fracture q
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* Post sample volumetric visualization

* View failure modes after mechanical stimulus

» Split Hopkinson pressure bar impact
testing

« Span larger strain rate range
« Extract bulk stress strain data

« High speed imaging to view material
deformation and fracture

15
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4 part mold planarity uncertainty £ | TEXAS A&M

e Quantifying uncertainty in planarity clearance
I assuming single pistons are free to rotate / ______
. Initial assumptions e} | S

tosion = 0.197 in, measured from steel pistons | L —o=="7

—  dpiston = 0.998 in, measured from steel pistons <€ >

. dpiston
—  dmoig = 1in, assumed from reamed holes

* x=0.01inin this scenario (10 mils, £5 mils

from center) 6\ tpiston
* Foralinch tall sample, this corresponds to

+0.5% strain measured from center clearance
* Conservative assessment as this does not dpiston $X

take into account driver bolt flattening the 0

piston

€ >
. _4 [clearance drmold
6 = sin
tpiston

X = dpiston * sin(6)

18



Piston Uncertainty Propagation KM | TEXAS A&M
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* Measured variety of samples using dial indicator on
mill machine surface

Samples

Thin PEEK Piston Stainless and PEEK Pistons Thick PEEK Piston
14 L 17 27 L 28 L 29 L 30 65 68 74 63 67 71
. AVG 7.7 04 | 13 -3.6 1.4 -0.2 -3.5 2.2 -0.8 0 -0.2 0.8
) C -7.7 0.4 -1.3 3.6 -1.4 0.2 3.5 2.2 0.8 0 0.2 -0.8
E g % 1 9.7 -6.6 0.7 -3.4 2.1 2.2 -7.5 1.2 2.2 3 -0.8 4.2
2 % & 2 -5.7 -1.6 3.7 2.6 2.1 0.2 1.5 2.2 -6.2 -2 -5.8 -3.8
s -3 3 13.3 6.4 -0.3 0.6 -1.4 -1.8 5 -3.8 1.8 -3 3.2 -3.8
4 9.8 1.4 -2.8 -3.4 -1.4 -0.8 -2.5 -1.8 5.8 2 3.2 4.2
Tolerance | 13.3 6.6 3.7 3.6 2.1 2.2 7.5 3.8 6.2 3 5.8 4.2

* Worst case samples are 7.5 mils from average
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s | ViscoPlastic-ViscoSCRAM Model Theory

» Kinematics:
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Slide pulled from Dr. Judy Brown’s presentation “The role of pressure-dependent viscoplasticity and volumetric dilatation in energetic 20
materials at intermediate strain rates” July 2022



