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We introduce the randomized analog verification (RAV) protocol for verification of quantum computers with  [Elirelsl - [=l¥ys[o]
continuously-parameterized gate sets, as well as for verification of analog quantum simulators. We show that %}j l:'ﬁ._

RAV requires fewer circuit repetitions than cross-entropy benchmarking (XEB) to produce an equivalently Bl E:E:E—’-,!-‘;
precise estimate of the error rate. We demonstrate this efficiency advantage numerically and experimentally. 7 se12021) 2208 13074
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For this simulated five-qubit system, we observe that RAV error estimates have
significantly smaller (by a factor of 2 to 3) standard deviation than XEB error

Fidelity estimates for a single circuit execution:

. Z:{: P(a:)Q(a:) Jif N Q(Q;O) ]{[ estimates given the same number of circuit repetitions.
FxgB = P2 1 FRAV = 1
Z:c (37 ) N P (370) N This suggests that RAV would require 4x-9x fewer shots than XEB to obtain
P(x) = ideal probability of measuring x X, = expected RAV output state error estimates to some desired precision.
Q(x) = observed probability of measuring x N = 2" = dimension of n-qubit system
Measurement of RAV fidelity estimates is more efficient than XEB fidelity Experimental demonstration

estimates, since only one output probability must be measured.

We tested 50 RAV and 50 XEB two-qubit sequences on a
trapped-ion quantum processor at the Quantum Scientific
Computing Open User Testbed (QSCOUT) operated by Sandia
National Laboratories.

We demonstrate this by calculating the variance of the RAV and XEB fidelity
estimates under varying amounts of depolarization:
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We observe that RAV fidelity estimates have a smaller standard deviation than
XEB fidelity estimates in all cases, and especially for smaller qubit count n and The RAV runs on QSCOUT produce error estimates with significantly smaller

smaller depolarization fraction A. standard deviation (by a factor of 2.5 to 5) than those obtained from XEB runs.

This means that for a fixed number of shots K, RAV circuits will provide a fidelity  This suggests that RAV would require 6x-25x fewer shots than XEB to produce
estimate with lower uncertainty than XEB circuits. an equivalently-precise error estimate.




